Skip to Content

This is an archived copy of the 2014-15 catalog. To access the most recent version of the catalog, please visit http://catalog.utexas.edu/.

Graduate Courses

The faculty has approval to offer the following courses in the academic years 2013–2014 and 2014–2015; however, not all courses are taught each semester or summer session. Students should consult the Course Schedule to determine which courses and topics will be offered during a particular semester or summer session. The Course Schedule may also reflect changes made to the course inventory after the publication of this catalog.

 

Mechanical Engineering: M E

M E 180M, 280M, 380M, 680M, 980M. Research.

Individual research. May be repeated for credit. Offered on the credit/no credit basis only. Prerequisite: Graduate standing in mechanical engineering.

M E 380Q. Mathematical Methods in Engineering.

Applications of mathematical analysis and numerical concepts to typical engineering problems. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mathematics 427K or the equivalent.

Topic 1: Engineering Analysis: Analytical Methods. Analytical solutions for linear ordinary differential equations; numerical integration of ordinary differential equations; Fourier series and integrals; the Laplace transform; the solution of partial differential equations; vector analysis and linear transformations.
Topic 2: Engineering Analysis: Advanced Analytical Methods. Classification and solution of partial differential equations; includes linear superposition, separation of variables, Fourier and Laplace transform methods, Green's functions, similarity solution, and spectral methods; introduction to solution of nonlinear partial differential equations, including both exact and approximate techniques, with a strong emphasis on physical systems.
Topic 3: Perturbation Methods. Introduction to perturbation theory; regular expansions and sources of nonuniformities; method of strained coordinates and multiple scales; method of matched asymptotic and composite expansions. Places strong emphasis on the relationship between the physical and the mathematical basis and on the crucial role of nondimensionalization in problem solving.
Topic 4: Numerical Methods for Differential Equations. Numerical solution of ordinary differential equations, both initial and boundary value equations; includes quasilinearization, shooting methods, and method of adjoints; classification and solution of partial differential equations by the finite difference method; stability and convergence criteria for various schemes; special attention to nonlinear equations with a strong emphasis on the Navier-Stokes equations.

M E 381P. Dynamics of Fluids.

Detailed study of fluid dynamics, boundary layer phenomena, and incompressible flows. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Fundamentals of Incompressible Flow. Fundamentals. Kinematic and dynamic equations for compressible viscous flow, incompressible flow criteria, viscous flow patterns, and solution methods.
Topic 2: Compressible Flow and Turbomachinery. Two-dimensional flow at subsonic and supersonic Mach numbers, method of characteristics, shock tubes, oblique shocks, wave interactions.
Topic 3: Dynamics of Turbulent Flow. Fundamentals of turbulence, including scaling, transport, and kinetic energy of turbulence; wakes, jets; wall-bounded flows; spectrum of turbulence.
Topic 4: Multiscale Flow and Transport Phenomena. Fundamentals of flow and transport phenomena in multiscale systems, including momentum, energy, and mass transport phenomena at the microscale; surface tension (capillarity); electrokinetics; micro-scale transport in porous media; multi-phase flow; rheology; and complex fluids.
Topic 5: Applications of Incompressible Flow. Dynamics of vorticity, inviscid flow; boundary layer theory and computational techniques, linear stability theory for parallel flow, flow at moderate Reynolds number.

M E 381Q. Thermodynamics.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mechanical Engineering 326 or the equivalent.

Topic 1: Advanced Thermodynamics. Development of macroscopic thermodynamics from basic physical relationships; introduction to the thermodynamics of mixtures.
Topic 4: Molecular Gas Dynamics. Same as Aerospace Engineering 382R (Topic 6: Molecular Gas Dynamics). Kinetic theory, thermodynamics, statistical mechanics. Applications: equilibrium gas properties, chemical kinetics, interaction of matter with radiation, rarefied gas dynamics.

M E 381R. Heat Transfer and Rate Processes.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mechanical Engineering 339 or the equivalent.

Topic 1: Advanced Conductive Heat Transfer. Modeling approaches for composite systems; phase change in conduction-dominant heat transfer systems; analysis of complex source terms in conduction systems; conduction physics at material interfaces; coupled thermo-mechanical response in conduction systems; and solution techniques for multidimensional, unsteady conduction phenomena.
Topic 2: Advanced Convective Heat and Mass Transfer. Fundamental study of momentum, energy, and mass transport in convective systems in laminar and turbulent regimes, and several flow configurations.
Topic 3: Radiation Heat Transfer. Thermal radiation, blackbody properties, surface properties, radiant exchange, absorbing and emitting media, combined modes.
Topic 4: Fundamentals of Heat and Mass Transfer. Fundamentals of conduction, convective heat transfer, diffusive and convective mass transfer, thermal radiative exchange.
Topic 5: Radiation in Participating Media. Methods for treating thermal radiation in absorbing, transmitting, and scattering media.
Topic 6: Multiphase Flow and Heat Transfer. Heat, mass, and momentum transfer in multi-phase flow systems: flows with particles, drops and bubbles, boiling, condensation, and absorption.
Topic 7: Nanoscale Energy Transport and Conversion. Nanoscale transport phenomena and energy conversion processes. Parallel theoretical treatment of transport and conversion processes of electrons, phonons, photons, and molecules in various applications including photovoltaic and thermoelectric energy conversions, microelectronics, nanomaterials, and laser materials processing.

M E 382N. Computational Fluid Dynamics.

Numerical analysis applied to fluid flow and heat transfer problems. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Introduction to Computational Fluid Dynamics. Applied numerical analysis, including solution of linear algebraic equations and ordinary and partial differential equations; modeling of physical processes, including fluid flow and heat and mass transfer; use of general-purpose computer codes, including commercial computational fluid dynamics software. Additional prerequisite: Mechanical Engineering 339 or the equivalent.
Topic 2: Computational Methods for Thermal Fluid Systems. Introduction to the use of computational tools in the analysis of thermal-fluid systems, with particular emphasis on verification of results and error analysis. Included are interpolation, differentiation, quadrature, solution of linear and non-linear equations, optimization, differential equations and statistics. Additional prerequisite: Mathematics 427K or the equivalent.

M E 382P. Topics in Experimental Thermal/Fluid Systems.

Use of modern experimental techniques and instrumentation in the thermal/fluid sciences. Two lecture hours and three laboratory hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Advanced Experimental Methods for Thermal/Fluid Systems. Design of experiments; fundamentals of electronic signal processing and optics; advanced experimental techniques, including flow measurements with laser-Doppler velocimetry, particle image velocimetry, and hot-wire anemometry; and thermal measurements with infrared cameras and thermocouples.
Topic 2: Optics and Lasers. Fundamentals of geometric and physical optics; interaction of light with matter; spectroscopy; and laser and electro-optics applications.

M E 382Q. Design of Thermal and Fluid Systems.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mechanical Engineering 339 or the equivalent.

Topic 2: Solar Energy System Design. Solar radiation, solar collectors, storage, and system analysis and design. Application to both thermal and photovoltaic systems.
Topic 3: Advanced Thermo-Fluid Systems. Project-based course addressing the design and analysis of systems in which thermal and fluid processes are central to function and performance. Advanced topics including transient system analysis, multicomponent nonreacting and reacting gas mixtures, phase change phenomena, and design principles based on entropy generation minimization are covered in the context of specific thermal-fluid applications.
Topic 4: Energy Technology and Policy. Multidisciplinary overview of energy technologies, fuels, environmental impacts, and public policies. Quantitative engineering analysis in energy, including the differences among fuels and energy technologies, the electricity sector, liquid fuels, conventional fuels, renewable fuels, impacts on the environment, basics of atmospheric chemistry, and water use for power plant cooling. Energy policy and the societal aspects of energy, such as culture, economics, war, and international affairs, are covered.

M E 382R. Topics in Combustion.

Fundamentals of combustion science, technology, and engineering. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Fundamentals of Combustion. Combustion phenomena are examined from a fundamental perspective. Topics include equilibrium phenomena, chemical kinetics, explosions, detonations, and premixed and diffusion flames. Additional prerequisite: Knowledge of computer programming or the use of public domain codes.
Topic 2: Chemical Kinetics. The theory of combustion chemistry. Issues include physics of molecular interactions, the explosion peninsula, elementary reaction schemes, reduced reaction schemes, and global chemistry.
Topic 5: Advanced Combustion. Presentation and analysis of multi-component and reacting conservation equations; examination of the theory of laminar flames (premixed and nonpremixed) using asymptotic methods; detailing of ignition and extinction phenomena; discussion of flame response to transport and flow modifications; and approaches to analyzing turbulent premixed and nonpremixed flames.
Topic 6: Combustion Engine Processes. Principles of internal combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors affecting performance.

M E 382T. Fire Science.

Analysis of dynamics and consequences of fire in structures. Topics include combustion thermochemistry, premixed and diffusion flames, fluid mechanics of fire, human tenability in burning structures, computer modeling of fires. Three lecture hours a week for one semester. Mechanical Engineering 382R (Topic: Fire Science) and 382T may not both be counted. Prerequisite: Graduate standing, and Mechanical Engineering 326, 330, and 339, or their equivalents.

M E 383Q. Analysis of Mechanical Systems.

Detailed studies in the characteristics of mechanical systems. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Vibrations. Formulation of discrete and continuous models for mechanical systems in vibration; modal analysis; analytical solution methods for constant property linear systems; numerical solution methods.
Topic 2: Dynamics of Mechanical Systems. Advanced dynamics, including Newton-Euler, Lagrange, and Hamilton's principles; gyroscopic effects in mechanical systems; analysis of stability of systems; continuous bodies; introduction to Hamilton-Jacobi.
Topic 4: Modeling of Physical Systems. Development of models for mechanical, electrical, fluid, thermal, and chemical systems; circuit techniques; bond graphs; energy and variational methods; hardware examples.
Topic 5: Wave Propagation. Fundamentals of wave propagation; transverse waves on strings and membranes; compressional, torsional, and flexural waves in rods and plates; longitudinal, shear, and surface waves in elastic media; tube waves; and water waves.
Topic 6: Fourier and Spectral Analysis in Dynamic Systems. Fourier transformations (series, integrals, fast Fourier transforms) and their relationships. Sampling, aliasing, convolution, correlation, leakage, windowing, power spectra, frequency response functions, and coherence functions in one-dimensional digital signal processing. Cepstrum analysis, Hilbert transforms. Experimental techniques and applications include modal analysis, mechanical signature analysis, and path identification. Additional prerequisite: Consent of instructor.
Topic 8: Digital Signal Processing. Sampling and quantizing processes; analog/digital and digital/analog conversion; digital Fourier analysis, including fast Fourier transform; z transform; design of finite impulse response and infinite impulse response digital filters.
Topic 9: Applied Intelligence for Engineers. Fundamental concepts of artificial neural systems; architecture, paradigms, topology, and learning algorithms. Introduction to the most popular networks and to their selection for engineering applications.
Topic 10: Modeling and Simulations of Multienergy Systems. Methods for modeling and simulation of multienergy systems. Detailed study of applications in electromechanical systems, fluid power, chemical and biological processes, optimal control, and other areas of interest to the class.

M E 383S. Lubrication, Wear, and Bearing Technology.

Theory of friction and wear; design of bearing systems, including hydrodynamic, rheodynamic, and direct contact devices. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Friction and Wear of Materials. Theories of friction, theories of wear (adhesion, delamination), pitting, spalling, fretting, and galvanic corrosion.

M E 384E. Electromechanics.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Electromechanical Dynamics. Same as Electrical Engineering 394 (Topic 10: Electromechanical Dynamics). Maxwell's equations and transient response of electrical machines.
Topic 2: Design of Electrical Machines. Same as Electrical Engineering 394 (Topic 11: Design of Electrical Machines). Electrical and mechanical design of electrical machines.

M E 384N. Acoustics.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Acoustics I. Same as Electrical Engineering 384N (Topic 1: Acoustics I). Plane waves in fluids; transient and steady-state reflection and transmission; lumped elements; refraction; strings, membranes, and rooms; horns; ray acoustics; absorption and dispersion.
Topic 2: Acoustics II. Same as Electrical Engineering 384N (Topic 2: Acoustics II). Spherical and cylindrical waves, radiation and scattering, multipole expansions, Green's functions, waveguides, sound beams, Fourier acoustics, Kirchhoff theory of diffraction, and arrays.
Topic 3: Electromechanical Transducers. Same as Electrical Engineering 384N (Topic 3: Electromechanical Transducers). Modeling, analysis, and design of transducers for reception and transmission of acoustic and vibration signals; dynamics of coupled electrical, mechanical, and acoustical systems; and the effects of transducer characteristics on fidelity and efficiency of transduction.
Topic 4: Nonlinear Acoustics. Same as Electrical Engineering 384N (Topic 4: Nonlinear Acoustics). Waveform distortion and shock formation, harmonic generation and spectral interactions, effects of absorption and dispersion, parametric arrays, Rankine-Hugoniot relations, weak shock theory, numerical modeling, radiation pressure, and acoustic streaming.
Topic 5: Underwater Acoustics. Same as Electrical Engineering 384N (Topic 5: Underwater Acoustics). Acoustical properties of the ocean; point sources and Green's functions; reflection phenomena; ray theory; normal mode theory; guided waves in horizontally stratified fluid media; WKB and parabolic approximations.
Topic 6: Architectural Acoustics. Same as Electrical Engineering 384N (Topic 6: Architectural Acoustics). Human perception of sound, principles of room acoustics, sound-absorptive materials, transmission between rooms, and acoustical design of enclosed spaces.
Topic 7: Ultrasonics. Same as Electrical Engineering 384N (Topic 7: Ultrasonics). Acoustic wave propagation in fluids, elastic solids, and tissue; transducers, arrays, and beamforming; nondestructive evaluation; and acoustical imaging.

M E 384Q. Design of Control Systems.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mechanical Engineering 364L or the equivalent.

Topic 1: Introduction to Modern Control. State variable methods, eigenvalues, and response modes; controllability, observability, and stability; calculus of variations; optimal control; Pontryagin maximum principle; control of regulator and tracking servomechanisms; Hamilton-Jacobi, dynamic programming; deterministic observers, Kalman filter; discrete and continuous time.
Topic 2: Nonlinear Control Systems. State space formulation; stability criteria; Liapunov functions; describing functions; signal stabilization; Popov and circle criteria for design.
Topic 3: Time-Series Modeling, Analysis, and Control. Same as Operations Research and Industrial Engineering 390R (Topic 3: Time-Series Modeling, Analysis, and Control). Methods for analytical modeling, analysis, prediction, and control of linear, stationary time series. Includes examples of advanced research in nonstationary time-series modeling and applications in manufacturing, financial engineering, geosciences, and other areas. Students complete a project on a topic of their choice. Additional prerequisite: Graduate standing, and Mechanical Engineering 364L or the equivalent, an undergraduate calculus-based course in probability and statistics or consent of instructor.
Topic 7: Stochastic Systems, Estimation, and Control. Probability and random variables; filtering theory; stochastic calculus; stochastic control; engineering applications; linear and nonlinear systems; spectral techniques.

M E 384R. Robotics.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Robotics and Automation. Component technologies for precision machines based on dynamic modeling and motion programming: cams, linkages, planar manipulators.
Topic 2: Design of Smart Mechanisms. Design of reprogrammable multiple-degree-of-freedom architectures. The course addresses various mechanical configurations and stresses the integrated design approach to sensing/actuation/control architecture and control software. Includes design project.
Topic 3: Advanced Dynamics of Robotic Systems. Treatment in depth of the dynamics of robotic systems. Discussion of modeling, analysis, and control of conventional serial robots, in-parallel manipulators, dual arms, and legged locomotion systems.
Topic 4: Geometry of Mechanisms and Robots. Advanced topics in theoretical kinematics geometry: applications of screw system theory to the study of motion and force fields in spatial mechanisms and robotic systems; analytical and numerical schemes associated with kinematics geometry.
Topic 5: Planar Mechanism Synthesis. Design of planar mechanisms for applications that require rigid body guidance, function generation, and path generation. Graphical and analytical techniques. Computer-aided design projects.

M E 385J. Topics in Biomedical Engineering.

Three lecture hours a week for one semester, or as required by the topic. May be repeated for credit when the topics vary. Prerequisite: Graduate standing in engineering and consent of instructor.

Topic 1: Cell and Tissue Anatomy and Physiology for Engineers. An overview of cellular biology, including functional cellular anatomy, DNA replication and the cell cycle, protein synthesis, membrane structure and function, energy metabolism, cellular homeostasis, and cell repair and death; and functional anatomy and physiology of the basic tissues. Normally offered in the fall semester only.
Topic 2: Organ System Anatomy, Physiology, and Pathology for Engineers. The functional anatomy and physiology of the major human organ systems; representative pathologic disorders associated with these organs. An overview of general pathologic processes, with emphasis on the influences of normal and abnormal organ anatomy, physiology, and disease on the definition and solution of biomedical engineering problems. Two lecture hours and one three-hour laboratory a week for one semester. Normally offered in the spring semester only. Additional prerequisite: Mechanical Engineering 385J (Topic 1) or the equivalent.
Topic 3: Bioelectric Phenomena. Examines the physiological bases of bioelectricity and the techniques required to record bioelectric phenomena both intracellularly and extracellularly; the representation of bioelectric activity by equivalent dipoles and the volume conductor fields produced. Normally offered in the fall semester only.
Topic 5: Cardiovascular Dynamics. Anatomy, physiology, pathophysiology, and dynamics of the cardiovascular system, with emphasis on the design and application of electrical and mechanical devices for cardiac intervention. Normally offered in the fall semester only.
Topic 9: Laser-Tissue Interaction: Thermal. The thermal response of random media in interaction with laser irradiation. Calculation of the rate of heat production caused by direct absorption of the laser light, thermal damage, and ablation. Normally offered in the spring semester only.
Topic 10: Biomedical Application of Transport Phenomena. Investigates radioisotopic methods for biological transport, including theory and experiments. Investigates artificial organ systems with clinical laboratory experiments to augment theory presented in lectures.
Topic 11: Biomedical Engineering Hospital Interfaces. Students gain firsthand knowledge of the instrumentation, procedures, and organization of a modern hospital. Class sessions are held in the different clinical services and laboratories of the hospital. Normally offered in the spring semester only.
Topic 12: Biomedical Heat Transfer. Heat transfer in biological tissue; determination of thermodynamic and transport properties of tissue; thermal effects of blood perfusion; cryobiology; numerical modeling methods; clinical applications. Normally offered in the fall semester only. Additional prerequisite: Mechanical Engineering 339, Chemical Engineering 353, or the equivalent.
Topic 13: Molecular Recognition in Biology and Biotechnology.
Topic 15: Biosignal Analysis. Theory and classification of biological signals such as EEG, EKG, and EMG. Data acquisition and analysis procedures for biological signals, including computer applications. Normally offered in the spring semester only.
Topic 16: Laser-Tissue Interaction: Optical. The optical behavior of random media such as tissue in interaction with laser irradiation. Approximate transport equation methods to predict the absorption and scattering parameters of laser light inside tissue. Port-wine stain treatment; cancer treatment by photochemotherapy; and cardiovascular applications. Normally offered in the fall semester only.
Topic 17: Biomedical Instrumentation II: Real-Time Computer-Based Systems. Design, testing, patient safety, electrical noise, biomedical measurement transducers, therapeutics, instrumentation electronics, and microcomputer interfaces. Several case studies are presented. Four structured laboratories and an individual project laboratory. Normally offered in the fall semester only.
Topic 18: Biomedical Image Processing. Physical principles and signal processing techniques used in thermographic, ultrasonic, and radiographic imaging, including image reconstruction from projections such as CT scanning, MRI, and millimeter wave determination of temperature profiles. Normally offered in the spring semester only. Additional prerequisite: Electrical Engineering 371R.
Topic 20: Network Thermodynamics in Biophysics. Modeling and simulation methods for nonlinear biological processes, including coupling across multienergy domains; practical implementation by bond graph techniques. Normally offered in the spring semester only. Additional prerequisite: Mechanical Engineering 344 or consent of instructor.
Topic 22: Musculoskeletal Biomechanics. Synthesis of properties of the musculotendon and skeletal systems to construct detailed computer models that quantify human performance and muscular coordination. Additional prerequisite for kinesiology students: Mathematics 341 and Kinesiology 395 (Topic 36: Biomechanics of Human Movement).
Topic 23: Optical Spectroscopy. Measurement and interpretation of spectra: steady-state and time-resolved absorption, fluorescence, phosphorescence, and Raman spectroscopy in the ultraviolet, visible, and infrared portions of the spectrum. Normally offered in the fall semester only.
Topic 26: Therapeutic Heating. Engineering aspects of electromagnetic fields that have therapeutic applications: diathermy (short wave, microwave, and ultrasound), electrosurgery (thermal damage processes), stimulation of excitable tissue, and electrical safety. Normally offered in the spring semester only.
Topic 27: The Biotechnology Revolution and Engineering Ethics. The history and status of genetic engineering; potential applications in medicine, agriculture, and industry; ethical and social issues surrounding the engineering of biological organisms; ethics in engineering practice in physical and biological realms. Normally offered in the spring semester only.
Topic 28: Noninvasive Optical Tomography. Basic principles of optical tomographic imaging of biological materials for diagnostic or therapeutic applications. Optical-based tomographic imaging techniques including photothermal, photoacoustic, and coherent methodologies.
Topic 29: Transport Processes in Biological Systems. Introduction to engineering analysis of transport phenomena in living systems, including fluid flow, heat transfer, pharmacokinetics, and membrane fluxes with clinical applications.
Topic 30: Introduction to Biomechanics. Modeling and simulation of human movement; neuromuscular control; computer applications; introduction to experimental techniques. Three lecture hours and one laboratory hour a week for one semester.
Topic 31: Biomedical Instrumentation I. Application of electrical engineering techniques to analysis and instrumentation in biological sciences: pressure, flow, temperature measurement; bioelectrical signals; pacemakers; ultrasonics; electrical safety; electrotherapeutics.
Topic 32: Projects in Biomedical Engineering. An in-depth examination of selected topics, such as optical and thermal properties of laser interaction with tissue; measurement of perfusion in the microvascular system; diagnostic imaging; interaction of living systems with electromagnetic fields; robotic surgical tools; ophthalmic instrumentation; noninvasive cardiovascular measurements. Three lecture hours and six laboratory hours a week for one semester. Additional prerequisite: Mechanical Engineering 385J (Topic 31).
Topic 33: Neurophysiology/Prosthesis Design. The structure and function of the human brain. Discussion of selected neurological diseases in conjunction with normal neurophysiology. Study of neuroprosthesis treatments and design philosophy, functional neural stimulation, and functional muscular stimulation. Normally offered in the fall semester only.
Topic 34: Biopolymers and Drug/Gene Delivery. Introduction to different classes of biopolymers. Biodegradability and biocompatibility. Interaction of cells and tissues with polymers and polymeric implants; immunology of biomaterials. Applications of polymers in medicine and biology. Gene therapy and generic immunization. The use of biopolymers and drug/gene delivery in organ regeneration and tissue engineering. Normally offered in the fall semester only.

M E 386P. Materials Science: Fundamentals.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Introduction to Phase Transformations. Basics of crystal structures and phase diagrams; diffusion; solidification; solid-state phase transformations.
Topic 2: Mechanical Behavior of Materials. Elastic deformation; viscoelasticity; yielding, plastic flow, plastic instability; strengthening mechanisms; fracture, fatigue, creep; significance of mechanical properties tests. Microstructural mechanisms and macroscopic behavior of metals, polymers, ceramics, and composites.
Topic 3: Introduction to Thermodynamics of Materials. Thermodynamic properties; reactions and chemical equilibrium in gases; solutions, phase equilibria, phase diagrams, reaction equilibria; surfaces and interfaces; point defects in crystals.
Topic 4: Introduction to Solid-State Properties of Materials. Same as Electrical Engineering 396V (Topic 5: Introduction to Solid-State Properties of Materials). Introduction to the electronic, magnetic, and optical properties of materials. Solid-state properties of metals, semiconductors, and ceramics; fundamental concepts needed for the description of these properties, using an introductory-level description of the electronic structure of solids.
Topic 5: Structure of Materials. Essential crystallography of lattices and structures; symmetry; elements of diffraction and reciprocal lattices; point, line, and surface defects in crystals; crystalline interfaces; noncrystalline materials; polymers; glasses.
Topic 6: Kinetic Processes in Materials. Review of irreversible thermodynamics and rate of entropy production to define the equilibrium state of a system; derivation of mathematical expressions to describe relaxation from a constrained state to equilibrium; diffusional processes in materials; calculation of diffusion coefficients from solid-state properties; dislocations and interfaces; kinetics of phase transformations.

M E 386Q. Materials Science: Structure and Properties.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Theory of Materials. Periodic behavior and the periodic table; historical approach to the principles of crystal structure; complex alloy phases; some aspects of phase stability.
Topic 2: Phase Diagrams. Phase equilibria in materials systems; systematic treatment of unary, binary, and ternary phase diagrams.
Topic 3: Fracture of Structural Materials. Microscopic and macroscopic aspects of ductile and brittle fracture; fracture mechanisms and fracture prevention.
Topic 4: Physical Metallurgy of Steels. The iron-carbon system; transformations and structures of steels; properties of pearlite, bainite, and martensite; tempering; hardenability and the effect of alloying elements.
Topic 7: Composite Materials. The theory of structural composite materials, their physical and mechanical properties; processing associated with metal-ceramic-polymer composites. Additional prerequisite: Mechanical Engineering 260K (or 360K) or the equivalent, Mechanical Engineering 378K or the equivalent, or consent of instructor.
Topic 9: Crystalline and Composite Anisotropy. Mathematical analysis of anisotropic materials, including single crystals, laminate composites, and deformation-hardened metals. Topics include thermal and electrical conductivity, diffusivity, thermal expansion, elasticity, and yielding.
Topic 10: High-Temperature Materials. Theory and practice in use of materials for high-temperature structural applications; case-study considerations of actual problems and requirements; interactive process-microstructure-property relationships in materials development and applications of superalloys, intermetallics, composites, and ceramics; prospective trends.
Topic 11: Electroceramics. Bonding; crystal structures; defects; phase diagrams; glass ceramics; electrical, dielectric, magnetic, and optical ceramics.
Topic 13: Mechanical Behavior of Ceramics. Microstructure-mechanical property relationships in ceramics; principles of fracture mechanics, and static and dynamic fracture; static and cyclic fatigue; high-temperature behavior; strengthening and toughening mechanisms in monolithic ceramics; and particulate and fibrous ceramic composites.
Topic 14: Electrochemical Energy Materials. Electrochemical cells; principles of electrochemical power sources; materials for rechargeable and nonrechargeable batteries, fuel cells, and electrochemical capacitors.

M E 386R. Materials Science: Physical and Electronic Properties.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Localized versus Itinerant Electrons in Solids. Same as Electrical Engineering 396K (Topic 9: Localized versus Itinerant Electrons in Solids). Description of electrons, from free atoms to crystals; band theory contrasted with crystal-field theory; evolution of electronic properties on passing from magnetic insulators to normal metals, from ionic to covalent solids, from single-valent compounds to mixed-valent systems; electron-lattice interactions and phase transitions; many examples. Additional prerequisite: A semester of quantum mechanics and a semester of solid-state science or technology.
Topic 2: Localized-Electron Phenomena. Same as Electrical Engineering 396K (Topic 17: Localized-Electron Phenomena). Analysis of the variation in physical properties versus chemical composition of several groups of isostructural transition-metal compounds. Additional prerequisite: A semester of solid-state science and/or quantum mechanics.
Topic 3: Transport Properties of Transition-Metal Oxides. Electronic and ionic transport in transition-metal oxides as they relate to battery cathodes, solid oxide cells, spin electronics, thermistors, and high-temperature superconductors.

M E 386S. Materials Science: Microelectronics and Thin Films.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Thin Films and Interfaces. Application of thin films and interfaces in microelectronics; basic properties, deposition techniques, microstructures and defects, diffusion characteristics; materials reaction in thin films and at interfaces.
Topic 2: Metallization and Packaging. Technology requirements and trends, impact of device scaling, multilayered interconnect structures, Schottky and ohmic contacts, contact reactions, silicide properties and applications, electromigration, thermal/mechanical properties, reliability. Additional prerequisite: Mechanical Engineering 386S (Topic 1).

M E 386T. Materials Science: The Design of Technical Materials.

The process of designing a material for a specific engineering function as illustrated for various materials. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Ionic Conductors. Same as Electrical Engineering 396K (Topic 10: Ionic Conductors).
Topic 2: High-Temperature Superconductors. Same as Electrical Engineering 396K (Topic 11: High-Temperature Superconductors).
Topic 3: Catalytic Electrodes. Same as Electrical Engineering 396K (Topic 12: Catalytic Electrodes).
Topic 4: Magnetic Materials. Same as Electrical Engineering 396K (Topic 13: Magnetic Materials).

M E 387Q. Materials Science: Thermodynamics and Kinetics.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Diffusion in Solids. Atomic mechanisms and phenomenological basis for transport by diffusion.
Topic 2: Kinetics and Phase Transformations. Nucleation and growth, spinodal decomposition, transformations in alloy systems.
Topic 3: Solidification. Liquid to solid transformations in pure materials, alloys and eutectics; applications such as zone refining, composites, and castings.
Topic 4: Corrosion. Electrode kinetics and the theory of polarization, passivity, galvanic coupling, and high temperature oxidation.
Topic 5: Thermodynamics of Materials. First and second laws, fugacity, activity, chemical equilibrium, phase diagrams, and introductory statistical concepts.
Topic 6: Statistical Thermodynamics of Materials. Quantum mechanics applied to partition functions of condensed and gaseous phases; chemical equilibria; phase transitions; and lattice statistics including the Ising model.
Topic 7: Group Theory and Phase Transformations. Symmetry principles and the associated mathematics applied to the description of condensed phases and their transformations.

M E 387R. Materials Science: Experimental Techniques.

Three lecture hours a week for one semester. Some topics may require additional laboratory hours; these are identified in the Course Schedule. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Nondestructive Testing. Acoustic emission, ultrasonic, eddy current, dye penetrant, and magnetic methods.
Topic 3: Electron Diffraction and Microscopy. Transmission electron microscopy, kinematic electron diffraction theory, reciprocal lattice, defect analyses, scanning electron microscopy.
Topic 4: Advanced Electron Microscopy Theory and Techniques. Scanning transmission electron microscopy, microanalysis techniques, dynamical diffraction theory, convergent beam diffraction.
Topic 5: Materials Characterization Techniques. Classification and selection of characterization techniques: principles and applications of diffraction, spectroscopic, quantitative chemical analysis, thermal analysis, and transport and magnetic measurement techniques.
Topic 6: High-Resolution Transmission Electron Microscopy Techniques. Theory and practice of high-resolution phase contrast electron microscopy. Computer simulation of images and diffraction patterns.
Topic 7: Scanning Electron Microscopy. Theory and practice of scanning electron microscopy; image formation, elemental analysis, sample preparation, and electron-sample interactions. Three lecture hours and two laboratory hours a week for one semester.
Topic 8: Practical Electron Microscopy. Principles, operation, and techniques of transmission electron microscopy; acquiring and interpreting imaging, diffraction, and spectroscopy information; and hands-on experience with a transmission electron microscope. Three lecture hours and three laboratory hours a week for one semester.

M E 387S. Materials Processing.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 2: Processing of Materials. Principles, advantages, and problems of solid, liquid, and vapor materials processes; considerations of structural alloys, ceramics, engineering polymers, and composites.
Topic 3: Processing of Ceramics. Synthesis of powders, powder characterization, powder stabilization, consolidation of powders, sintering, densification, and grain growth.

M E 388C. Nuclear Power Engineering.

Fundamental principles of the design and analysis of nuclear systems; introduction to the physics of nuclear reactions, chain reactions, and nuclear energy generation; heat generation and conduction within nuclear systems; heat transfer and fluid flow in nuclear systems; the thermodynamics of nuclear power; the nuclear fuel cycle; and issues related to the materials aspect of reactor engineering. Three lecture hours a week for one semester. Prerequisite: Graduate standing.

M E 388D. Nuclear Reactor Theory I.

Principle concepts in the physics of nuclear systems, including radiation, radioactive decay, and the buildup and depletion of isotopes in nuclear systems; neutron-nucleus interactions and nuclear cross sections; transport or radiation using one-group and two-group diffusion theory; and concepts of criticality and time dependent reactors. Three lecture hours a week for one semester. Prerequisite: Graduate standing, and Mechanical Engineering 361E or the equivalent.

M E 388E. Nuclear Reactor Theory II.

Neutron-nucleus interactions and nuclear cross section calculations; transport of radiation using neutron transport theory and multigroup diffusion theory; heterogeneous reactor calculations; the kinetics of nuclear systems; perturbation theory; and the nuclear fuel cycle. Three lecture hours a week for one semester. Prerequisite: Graduate standing, and Mechanical Engineering 361E or the equivalent.

M E 388F. Computational Methods in Radiation Transport.

Transport equation, Monte Carlo method, energy and time discretization, discrete ordinates, integral methods, and even-parity methods. Three lecture hours a week for one semester. Prerequisite: Graduate standing.

M E 388G. Nuclear Radiation Shielding.

Radiation fields/sources; techniques in neutron and photon attenuation; transport description of radiation penetration. Three lecture hours a week for one semester. Mechanical Engineering 388G and 388R (Topic 1: Nuclear Radiation Shielding) may not both be counted. Prerequisite: Graduate standing.

M E 388H. Nuclear Safety and Security.

Same as Operations Research and Industrial Engineering 390R (Topic 15: Nuclear Safety and Security). Probabilistic risk assessment models and nuclear arms nonproliferation, including failure classifications; failure mode, effects, and criticality analysis (FMECA); fault and event trees; and reliability block diagrams. Discussion of specific areas from the Code of Federal Regulations. Three lecture hours a week for one semester. Only one of the following may be counted: Mechanical Engineering 337G, 388H, Operations Research and Industrial Engineering 390R (Topic 15). Prerequisite: Graduate standing, and an undergraduate calculus-based course in probability and statistics or consent of instructor.

M E 388J. Neutron Interactions and Their Applications in Nuclear Science and Engineering.

The fundamental principles of neutron interactions with matter and how these interactions are used in a variety of science and engineering research areas. Includes the history of neutron research, fundamental principles, dosimetry, depth profile, radiography, activation analysis, detection, homeland security, and scattering, with a significant emphasis placed on experimental design of these neutron techniques. Three lecture hours a week for one semester. Mechanical Engineering 388J and 397 (Topic: Neutron Interactions and Their Applications in Nuclear Science and Engineering) may not both be counted. Prerequisite: Graduate standing.

M E 388M. Mathematical Methods for Nuclear and Radiation Engineering.

Fundamental mathematics used in graduate studies in nuclear and radiation engineering. Topics include statistics, experimental data, propagation of error, detection limits, and differential and partial differential equations. Three lecture hours a week for one semester. Only one of the following may be counted: Mechanical Engineering 388M, 388Q (Topic 5: Mathematical Methods for Nuclear and Radiation Engineering), 397 (Topic: Mathematical Methods for Nuclear and Radiation Engineering). Prerequisite: Graduate standing.

M E 388N. Design of Nuclear Systems.

Integration of fluid mechanics, heat transfer, thermomechanics, and thermodynamics with reactor theory for core design. Three lecture hours a week for one semester. Mechanical Engineering 388N and 389Q (Topic 1: Design of Nuclear Systems) may not both be counted. Prerequisite: Graduate standing, and Mechanical Engineering 361E or the equivalent.

M E 388P. Applied Nuclear Physics.

Properties of the nucleus and its structure; binding energy and nuclear stability, and the liquid drop model of the nucleus; the shell model of the nucleus; deuteron bound-state wave function and energy, n-p scattering cross section, transition probability per unit time, and barrier transmission probability; nuclear conservation laws; the energetics and general cross section behavior in nuclear reactions; interactions of charged particles, neutrons, and gamma rays with matter; and alpha, beta, and gamma decay. Three lecture hours a week for one semester. Prerequisite: Graduate standing.

M E 389C. Nuclear Environmental Protection.

Ionizing radiation and its interactions with matter and living tissues; radioactive decay kinetics; external and internal dose measurement; transportation through the environment; managing radioactive waste streams; and safeguards. Three lecture hours a week for one semester. May not be counted by students with credit for Mechanical Engineering 389D and 389E. Mechanical Engineering 337F and 389C may not both be counted. Prerequisite: Graduate standing.

M E 389F. The Nuclear Fuel Cycle.

A survey of the nuclear fuel cycle, including resource acquisition, fuel enrichment and fabrication, spent fuel reprocessing and repository disposal. Nuclear fuel management and reactor physics are addressed in the context of fuel burn-up calculations. Uses cross-disciplinary tools such as cost-benefit and environmental impact analyses. Includes fuel cycles currently in use, advanced fuel cycle concepts currently being presented in the technical literature, and a group project designed to research, analyze, and document the technical, economic, and/or environmental ramifications of one of these advanced fuel cycles. Three lecture hours a week for one semester. Mechanical Engineering 389F and 397 (Topic: The Nuclear Fuel Cycle) may not both be counted. Prerequisite: Graduate standing.

M E 389Q. Nuclear and Radiation Engineering: Design of Systems.

Synthesis of engineering concepts, materials specifications, and economics in the design of nuclear systems. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing, and Mechanical Engineering 361E or the equivalent.

M E 390. Vehicle System Dynamics and Controls.

Fundamentals of ground vehicle dynamics, tire-road mechanics, vehicle control systems, vehicle stability, and simulation of vehicle systems. Three lecture hours a week for one semester. Only one of the following may be counted: Mechanical Engineering 360, 379M (Topic: Vehicle System Dynamics and Controls), 390, 397 (Topic: Vehicle System Dynamics and Controls). Prerequisite: Graduate standing.

M E 390F. Nuclear Analysis Techniques.

Thermal and fast neutron activation, scintillation and solid-state detectors, beta and gamma spectrometry, coincidence techniques. Two lecture hours and one and one-half laboratory hours a week for one semester. Mechanical Engineering 389R (Topic 2: Nuclear Analysis Techniques) and 390F may not both be counted. Prerequisite: Graduate standing.

M E 390G. Nuclear Engineering Laboratory.

Experiments using the TRIGA reactor and a subcritical assembly; measurement of reactor characteristics and operational parameters. Two lecture hours and one and one-half laboratory hours a week for one semester. Mechanical Engineering 389R (Topic 1: Nuclear Engineering Laboratory) and 390G may not both be counted. Prerequisite: Graduate standing.

M E 390N. Health Physics Laboratory.

The application of radiation and radiation protection instrumentation. Includes personnel monitoring; radiation detection systems; gamma-ray spectroscopy; determination of environmental radiation; counting statistics; and gamma and neutron shielding. One lecture hour and three laboratory hours a week for one semester. Prerequisite: Graduate standing.

M E 390T. Nuclear and Radiochemistry.

Theory and application of nuclear and radiochemistry, including alpha, beta, and gamma ray processes; fission products; statistics; solvent extraction; absorption and teaching techniques; various counting methods; and radiation protection. One lecture hour and three laboratory hours a week for one semester. Prerequisite: Graduate standing.

M E 391R. Artificial Intelligence Programming for Engineers.

Provides a working knowledge of LISP and compares it with PROLOG; use of the Texas Instruments Explorer, and artificial intelligence techniques applied to engineering problems. Three lecture hours a week for one semester. Prerequisite: Graduate standing and consent of instructor.

M E 392C. Design Optimization and Automation.

Optimization in mechanical design, including monotonicity analysis, gradient-based constrained optimization, tree-searching, and stochastic approaches. Three lecture hours a week for one semester. Prerequisite: Graduate standing and proficiency in C or MATLAB.

M E 392G. Computer Graphics and Computer-Aided Design.

Studies in computer graphics and its application to design. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Introduction to Computer Graphics. Two- and three-dimensional transformations, projections, and the graphics pipeline; fundamental algorithms for wire frame and hidden surface image generation; interactive techniques, geometric modeling, and realistic rendering using a standard graphics library. Additional prerequisite: Proficiency in C or C++.
Topic 2: Computer-Aided Geometric Design. Introduction to techniques for representing geometry for computer-aided engineering design. Two- and three-dimensional curve formulations, techniques from algebraic and vector geometry, implicit versus parametric definitions; and free-form surface formulation and solid modeling. Additional prerequisite: Proficiency in C or C++.
Topic 3: Advanced Computer-Aided Design Applications. Hardware and software for computer-aided design systems. Display devices, multidimensional graphics, optimization, use of artificial intelligence.
Topic 4: Advanced Topics in Computer-Aided Design. Detailed execution of an independent computer-aided design project. Projects require significant development and emphasize application of techniques from computer-aided engineering and interactive computer graphics. Lectures deal with the subject matter of the projects. Additional prerequisite: Mechanical Engineering 352K, 392G (Topic 1), or 392G (Topic 2); and consent of instructor.

M E 392M. Advanced Mechanical Design.

Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Analytical Techniques in Mechanical Design. Analytical techniques and some computational techniques for the advanced stress and strength analysis of machine components and mechanical structures.
Topic 3: Advanced Design of Machine Elements. Review of basic machine elements, properties, and stresses; fluid couplings and torque converters; thermal stresses, relaxation, and beneficial residual stressing; shells and rotors; plasticity.
Topic 6: Engineering Design Theory and Mathematical Techniques. Design history and philosophy. Survey of current research areas in design theory, methodology, and manufacturing. Tools for solving engineering system design and synthesis problems. Reverse engineering design project.
Topic 7: Product Design, Development, and Prototyping. Methodology and tools for the product development process. Functional designs based on real product needs. Product design project.

M E 392Q. Manufacturing.

Topics that cut across departmental concentrations (mechanical systems and design, metallurgy and materials engineering, operations research and industrial engineering), including design for manufacturing, manufacturing machines and manufacturing processing, and production systems. Three lecture hours a week for one semester; additional laboratory hours may be required for some topics. May be repeated for credit when the topics vary. Prerequisite: Graduate standing.

Topic 1: Introduction to Manufacturing Systems. Analysis and design of production systems to decrease manufacturing costs, decrease defects, and shorten delivery time by reducing process cycle times. Emphasis is on continuous flow manufacturing. Additional prerequisite: A basic understanding of statistics.
Topic 2: Computer Fundamentals for Manufacturing Systems. Computer graphics, computer-aided design, direct numerical control, relationship between computer-aided design and manufacturing.
Topic 4: Automation and Integration of Manufacturing Systems. Integration of automated manufacturing components into a cohesive manufacturing system. Selection of automation strategy, communication and interaction between system components, economics and reliability of the resulting systems.
Topic 5: Manufacturing Processing: Unit Processes. Important unit processing operations in manufacturing: cutting, drilling, and grinding metals, ceramics, composites, and polymers. Deformation processes: forming and rolling. Laser machining.
Topic 6: Mechatronics I. Integrated use of mechanical, electrical, and computer systems for information processing and control of machines and devices. System modeling, electromechanics, sensors and actuators, basic electronics design, signal processing and conditioning, noise and its abatement, grounding and shielding, filters, and system interfacing techniques. Three lecture hours and two laboratory hours a week for one semester.
Topic 7: Microcomputer Programming and Interfacing. Microcomputer architecture and programming; microcomputer system analysis; interfacing and digital control.
Topic 9: Mechatronics II. Interfacing microcomputers with sensors and actuators; hybrid (analog/digital) design; digital logic and analog circuitry; data acquisition and control; microcomputer architecture, assembly language programming; signal conditioning, filters, analog-to-digital and digital-to-analog conversion. Three lecture hours and two laboratory hours a week for one semester.
Topic 10: Statistical Methods in Manufacturing. Same as Operations Research and Industrial Engineering 390Q (Topic 7: Statistical Methods in Manufacturing). Statistical monitoring of manufacturing processes; methods and applications of various control charts; formal design of experiments (DOE), including the statistical evaluation of main and interaction effects, as well as intelligent experimentation through reduced factorial experimental design; Taguchi's design philosophy as applied to response surface methods and gradient-based search techniques; and advanced issues in quality control and design of manufacturing systems. Additional prerequisite: Knowledge of basic probability and statistics and consent of instructor.

M E 395. The Enterprise of Technology.

Studies the basis for assessing emerging technologies. Describes the process of technology commercialization, including identifying marketable technologies, defining products, and matching products to markets. Also studies intellectual property protection and strategy, and the steps and processes necessary to the successful design and manufacture of a product or service. Three lecture hours a week for one semester. Mechanical Engineering 395 and 397 (Topic: Enterprise of Technology: Laboratory to Market) may not both be counted. Prerequisite: Graduate standing.

M E 397. Current Studies in Engineering.

The equivalent of three class hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of the graduate adviser.

Topic 3: Facilitating Process Improvement. Same as Civil Engineering 397 (Topic 15: Facilitating Process Improvement) and Management 385 (Topic 43: Facilitating Process Improvement).
Topic 8: Energy and the Environment. Additional prerequisite: Consent of instructor.

M E 197K, 297K, 397K. Graduate Seminar.

Normally required of all mechanical engineering graduate students. For each semester hour of credit earned, one lecture hour a week for one semester. May be repeated for credit when the topics vary. Offered on the credit/no credit basis only. Prerequisite: Graduate standing.

Topic 1: Acoustics. Offered on the credit/no credit basis only.
Topic 2: Advanced Thermal/Fluid Seminar. Offered on the credit/no credit basis only.
Topic 3: Materials Engineering. Offered on the credit/no credit basis only.
Topic 4: Mechanical Systems and Design. Offered on the credit/no credit basis only.
Topic 5: Nuclear Engineering. Offered on the credit/no credit basis only.
Topic 6: Introductory Thermal/Fluid Seminar. Offered on the credit/no credit basis only.

M E 397M. Graduate Research Internship.

Research associated with enrollment in the Graduate Research Internship Program (GRIP). Three lecture hours a week for one semester. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and consent of instructor and the dean of the Cockrell School of Engineering.

M E 197P, 297P, 397P. Projects in Mechanical Engineering.

Independent project carried out under the supervision of a mechanical engineering faculty member. Three, six, or nine laboratory hours a week for one semester. Prerequisite: Graduate standing and consent of instructor and the graduate adviser.

M E 698. Thesis.

The equivalent of three lecture hours a week for two semesters. Offered on the credit/no credit basis only. Prerequisite: For 698A, graduate standing in mechanical engineering and consent of the graduate adviser; for 698B, Mechanical Engineering 698A.

M E 398R. Master's Report.

Preparation of a report to fulfill the requirement for the master's degree under the report option. The equivalent of three lecture hours a week for one semester. Offered on the credit/no credit basis only. Prerequisite: Graduate standing in mechanical engineering and consent of the graduate adviser.

M E 398T. Supervised Teaching in Mechanical Engineering.

Teaching under close supervision, group meetings or individual consultations, and reports as required. Three lecture hours a week for one semester. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and appointment as a teaching assistant.

M E 399R, 699R, 999R. Dissertation.

Offered on the credit/no credit basis only. Prerequisite: Admission to candidacy for the doctoral degree.

M E 399W, 699W, 999W. Dissertation.

Offered on the credit/no credit basis only. Prerequisite: Mechanical Engineering 399R, 699R, or 999R.


What Starts Here Changes the World