Graduate Courses
The faculty has approval to offer the following courses in the academic years 2013–2014 and 2014–2015; however, not all courses are taught each semester or summer session. Students should consult the Course Schedule to determine which courses and topics will be offered during a particular semester or summer session. The Course Schedule may also reflect changes made to the course inventory after the publication of this catalog.
Courses in other fields of study that are related to the graduate program in neuroscience are described in other sections of this catalog. A list of these courses is available from the advising office.
Neuroscience: NEU
NEU 380E. Vision Systems.
Introduction to the anatomy, physiology, and psychophysics of human vision from an information-processing and computational perspective. Three lecture hours a week for one semester. Neuroscience 380E and Psychology 380E may not both be counted. Prerequisite: Graduate standing and consent of instructor.
NEU 380G. Visual Neuroscience.
Physiology of the eye, the retina, and the visual pathways. Nutritional influences on risks for blinding diseases. Functional and ecological adaptations of primate vision. Three class hours a week for one semester. Neuroscience 380G and 385L (Topic: Visual Neuroscience) may not both be counted. Prerequisite: Graduate standing and consent of instructor.
NEU 080M. Dual MD/PhD Program with UT Medical Branch.
Preclinical medical study at the University of Texas Medical Branch at Galveston. May not be taken concurrently with another course at the University of Texas at Austin. Prerequisite: Graduate standing and admission to the MD/PhD dual degree program in neuroscience.
NEU 482T. Principles of Neuroscience I.
Examines the core material on essential topics in neuroscience from the molecular to the systems and behavioral levels. Four lecture hours a week for one semester. Only one of the following may be counted: Biology 381C, Kinesiology 382T, Neuroscience 382T, 482T, Pharmacy 382T, Psychology 382T. Prerequisite: Graduate standing and consent of instructor.
NEU 383C. Functional Neuroanatomy.
An examination of the anatomy of the brain and spinal cord, emphasizing connections and functions of neural systems. Three lecture hours a week for one semester. Neuroscience 383C and Psychology 383C may not both be counted. Prerequisite: Graduate standing and consent of instructor.
NEU 383D. Neuropharmacology.
An advanced survey of neurotransmitters and systems in the brain. Emphasis is on pharmacological analysis at the molecular level to determine mechanisms of action of drugs that act on the brain. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 383D, Pharmacy 383D, Pharmacy Graduate Studies 383D. Prerequisite: Graduate standing and consent of instructor.
NEU 383M. Data Analysis and Statistics for the Neurosciences.
Statistical applications relevant to areas of research in neuroscience. Three lecture hours a week for one semester. Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.
NEU 383T. Principles of Neuroscience II.
Review and discussion of research in all fields of neuroscience, including molecular, cellular, behavioral, and systems. Examines important early studies and contemporary work. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 381D, Kinesiology 383T, Neuroscience 383T, Pharmacy 383T, Psychology 383T. Prerequisite: Graduate standing and consent of instructor.
NEU 384C. Bootstrap Statistics.
Same as Psychology 384C. An introduction to modern methods of statistical analysis based on numerical computer simulation. Covers a range of common data analysis situations drawn mainly from the fields of neuroscience and experimental psychology. Techniques include point estimation, two-group and multiple group experiments, regression and curve fitting, and Bayesian analysis. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 384C, 385L (Topic: Bootstrap Statistics), Psychology 384C, 394U (Topic: Bootstrap Statistics). Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.
NEU 384M. Advanced Statistics: Inferential.
Same as Psychology 384M. Covers t-test, chi-square, analysis of variance, and nonparametric tests. Three lecture hours a week for one semester. Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.
NEU 185D. Responsible Conduct of Science.
Ethical considerations in the conduct of science, including issues of animal welfare, data analysis, fraud, publications, misconduct, intellectual property, grants, peer review, and mentor responsibility. One lecture hour a week for one semester. Only one of the following may be counted: Neuroscience 185D, Pharmacy 185D, Pharmacy Graduate Studies 185D. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and consent of instructor.
NEU 185L, 285L, 385L, 485L. Topics in Neuroscience.
For each semester hour of credit earned, the equivalent of one lecture hour a week for one semester. Additional laboratory hours may vary with the topic. With consent of instructor, may be repeated for credit when the topics vary. May be repeated for credit when the topics vary. Prerequisite: Graduate standing; twelve semester hours of upper-division coursework in biology; and consent of instructor.
Topic 1: Basic Processes of Nerve Cells. Three lecture hours a week for one semester. Biology 381K (Topic 10: Basic Processes of Nerve Cells) and Neuroscience 385L (Topic 1) may not both be counted.
Topic 3: Addiction Biology. Current research in addiction biology. Students present individual research papers and reports. Three lecture hours a week for one semester. Biology 381K (Topic 8: Addiction Biology) and Neuroscience 385L (Topic 3) may not both be counted.
Topic 5: Behavioral Neuroendocrinology. Current research in neuroendocrinology, including action of neuroendocrine systems on behavior, assays of substances in the blood to identify gene products, and examination of stress from neuroendocrine, behavioral, health, and immunity perspectives. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 385L (Topic 5), 394P (Topic: Behavioral Neuroendocrinology), Psychology 394P (Topic 17), 394P (Topic: Behavioral Neuroendocrinology).
Topic 6: Foundations of Human Neuroimaging. A survey of neuroimaging methods and results with particular emphasis on vision science. Describes the physical and physiological mechanisms of image formation. Emphasis on magnetic resonance methods for structural and functional imaging. Surveys other imaging modalities, including positron emission tomography (PET), optical, and EEG/MEG electrical source localization. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 381K (Topic: Foundations of Neuroimaging), Neuroscience 385L (Topic 6), 394P (Topic: Foundations of Magnetic Resonance Imaging Research), Psychology 394P (Topic 13: Foundations of Human Neuroimaging), 394P (Topic: Foundations of Magnetic Resonance Imaging Research).
Topic 7: Topics in Vision and Hearing. Current research in human vision and hearing. Three lecture hours a week for one semester. Neuroscience 385L (Topic 7) and Psychology 394U (Topic 8: Topics in Vision and Hearing) may not both be counted.
Topic 8: Ion Channels and Neuronal Signaling. Molecular properties of ion channels and the mechanisms of electrical signaling in neurons and other excitable cells. Three lecture hours a week for one semester.
Topic 9: Synaptic Physiology and Plasticity in the Central Nervous System. Detailed background in the physiology and plasticity of synaptic transmission in the mammalian central nervous system. Three lecture hours a week for one semester.
Topic 10: Functional and Synaptic Neuroanatomy. Human neuroanatomy examined from gross structure, cytology, and synaptic connectivity. Subjects include functional organization of somatosensory, motor, visual, auditory, olfactory, taste, limbic, vestibular, hypothalamic, and other systems in addition to the synaptic basis of learning and memory, fear, development, sleep, stress, etc. Three lecture hours and one laboratory hour a week for one semester. Additional prerequisite: Principles of neuroscience, vertebrate physiology, or other introductory neuroscience course; or consent of instructor.
Topic 12: Quantifying Brain Structure. Concepts and hands-on applications for quantifying aspects of brain and cellular structure, with a focus on stereological approaches. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 385L (Topic 12), 394P (Topic: Quantitative Methods for Brain Structure), Psychology 394P (Topic 16: Quantifying Brain Structure), 394P (Topic: Quantitative Methods for Brain Structure).
NEU 190, 290, 390. Research.
Individual research. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and fifteen semester hours of coursework in neuroscience. Students must sign up in the Neuroscience Graduate Studies Office before registering.
NEU 191. Graduate Seminar in Neuroscience.
Presentations and discussions of research topics in neuroscience. One lecture hour a week for one semester. May be repeated for credit. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and consent of instructor.
NEU 391N. Learning and Memory.
Same as Psychology 391N. Presentation of contemporary approaches to the study of conditioning and learning at the behavioral level. Focuses on empirical data and theoretical analysis of acquisition and performance in Pavlovian and instrumental conditioning. Includes discussion of habituation, sensitization, stimulus control, and other paradigms for studying cognitive processes in nonverbal organisms. Three lecture hours a week for one semester. Prerequisite: Graduate standing.
NEU 394P. Seminars in Neuroscience.
Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.
Topic 1: Current Topics in Behavioral Neuroscience. Brain-behavior relationships, particularly recent research in behavioral neuroscience, including the anatomical and neurochemical mechanisms of behavioral events, and behavioral influences on the brain. Neuroscience 394P (Topic 1) and Psychology 394P (Topic 1: Current Topics in Behavioral Neuroscience) may not both be counted. May be repeated for credit when the topics vary. Offered on the credit/no credit basis only.
Topic 3: Neurobiology of Learning and Memory. Neuroanatomical systems that are functionally related to basic forms of learning and memory in mammals. Neuroscience 394P (Topic 3) and Psychology 394P (Topic 3: Neurobiology of Learning and Memory) may not both be counted. May be repeated for credit when the topics vary.
Topic 4: Advanced Topics in Neuroanatomy. Neuroanatomical systems and function across species. Basic forms of neuroanatomy in mammals. Neuroscience 394P (Topic 4) and Psychology 394P (Topic 7: Advanced Topics in Neuroanatomy) may not both be counted. May be repeated for credit when the topics vary.
Topic 5: Cognitive Neuroscience. Focuses on the links between neural activity and behavior as simultaneously measured during the performance of sensory decision-making tasks. Includes functional magnetic resonance imaging experiments. May be repeated for credit.
Topic 7: Analysis of Functional Magnetic Resonance Imaging Data. Functional magnetic resonance imaging experimental design and analysis. Neuroscience 394P (Topic 7) and Psychology 394P (Topic 14: Analysis of Functional Magnetic Resonance Imaging Data) may not both be counted. May be repeated for credit when the topics vary. Additional prerequisite: Basic knowledge of functional neuroanatomy.
Topic 8: Topics in Systems Neuroscience. Focuses on one or two topics and examines them in depth through group discussions of key scientific manuscripts. Discusses both classical studies and contemporary research. Only one of the following may be counted: Neuroscience 394P (Topic 8), Psychology 394U (Topic 14: Topics in Systems Neuroscience), 394U (Topic: Advanced Topics in Systems Neuroscience).
Topic 9: Perception and Action. Current topics in visually guided behavior, including eye movements, attention, and motor control, from behavioral, computational, and neurophysiological approaches. Neuroscience 394P (Topic 9) and Psychology 394U (Topic 16: Perception and Action) may not both be counted. May be repeated for credit when the topics vary.
Topic 10: Statistical Methods in Computational Neuroscience. Same as Psychology 394U (Topic 19: Statistical Methods in Computational Neuroscience). Introduction to statistical and computational methods for understanding information processing in the nervous system, with emphasis on neural coding and statistical modeling of neural responses. Three class hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.
NEU 396D. Clinical Psychopharmacology.
Same as Psychology 396D. Recent findings concerning the mechanisms of action and the behavioral effects of psychoactive drugs, particularly those used in psychiatry. Three lecture hours a week for one semester. Prerequisite: Graduate standing and consent of instructor.
NEU 698. Thesis.
The equivalent of three lecture hours a week for one semester. Offered on the credit/no credit basis only. Prerequisite: For 698A, graduate standing in neuroscience and consent of the graduate adviser; for 698B, Neuroscience 698A.
NEU 399R, 699R, 999R. Dissertation.
Offered on the credit/no credit basis only. Prerequisite: Admission to candidacy for the doctoral degree.
NEU 399W, 699W, 999W. Dissertation.
Offered on the credit/no credit basis only. Prerequisite: Neuroscience 399R, 699R, or 999R.