This is an archived copy of the 2014-16 catalog. To access the most recent version of the catalog, please visit http://catalog.utexas.edu/.

Bachelor of Science in Geosystems Engineering and Hydrogeology

Geosystems engineers and hydrogeologists are concerned with the development and use of engineering approaches in the management of natural resources from the Earth’s surface and subsurface, environmental restoration of subsurface sites, and other processes related to the earth sciences. This degree program, offered in partnership by the Cockrell School of Engineering and the Jackson School, is designed to teach students the geological and engineering principles needed to solve subsurface resource development and environmental problems. The curriculum includes a fundamental sequence of engineering and geological sciences courses in such areas as multiphase fluid flow, physical and chemical hydrology, heat and mass transfer, field methods, and engineering design. This interdisciplinary systems approach, combining engineering and geological sciences, is increasingly required to address complex real-world problems such as characterization and remediation of aquifers. The degree program is designed to prepare graduates for employment with environmental, water resource management, and energy companies in addition to many government agencies. Better-qualified graduates of the program may pursue graduate study in subsurface environmental engineering, petroleum engineering, geology, and related fields.

The objective of the degree program is to prepare graduates for successful careers in subsurface environmental engineering (including carbon dioxide sequestration), oil and gas production and services, and similar fields. Graduates are expected to understand the fundamental principles of science and engineering behind the technology of geosystems engineering and hydrogeology, so that their education will not become outdated and so that they will be capable of self-instruction after graduation. They should also be prepared to serve society by applying the ideals of ethical behavior, professionalism, and environmentally responsible stewardship of natural resources.

Containing the following elements, the technical curriculum provides both breadth and depth in a range of topics:

  • A combination of college-level mathematics and basic sciences (some with experimental work) that includes mathematics through differential equations, physics, chemistry, and geology
  • Basic engineering and geologic topics that develop a working knowledge of fluid mechanics, strength of materials, transport phenomena, material properties, phase behavior, and thermodynamics
  • Engineering and geosciences topics that develop competence in characterization and evaluation of subsurface geological formations and their resources using geoscientific and engineering methods, including field methods; design and analysis of systems for producing, injecting, and handling fluids; application of hydrogeologic and reservoir engineering principles and practices for water and energy resource development and management; contamination evaluation and remediation methods for hydrologic resources; and use of project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty
  • A major capstone design experience that prepares students for engineering and hydrogeologic practice, based on the knowledge and skills acquired in earlier coursework and incorporating engineering and geological standards and realistic constraints
  • A general education component that complements the technical content of the curriculum

Curriculum

Course requirements are divided into three categories: basic sequence courses, major sequence courses, and other required courses. In addition, each student must complete the University’s core curriculum . In some cases, a course required as part of the basic sequence may also be counted toward the core curriculum; these courses are identified below. To ensure that courses used to fulfill the social and behavioral sciences and visual and performing arts requirements of the core curriculum also meet ABET criteria, students should follow the guidance given in ABET Criteria .

In the process of fulfilling the following degree requirements, students must also complete a course that carries an independent inquiry flag, a course that carries a quantitative reasoning flag, and two courses that carry a writing flag. The independent inquiry flag, the quantitative reasoning flag, and one writing flag are provided by courses specifically required for the degree; these courses are identified below. Students are advised to fulfill the second writing flag requirement with a course that meets another requirement of the core curriculum, such as the first-year signature course. Courses that may be used to fulfill flag requirements are identified in the Course Schedule . More information about flags is given at Skills and Experiences Flags .

Enrollment in major sequence courses is restricted to students who have received credit for all of the basic sequence courses and have been admitted to the major sequence. Requirements for admission to a major sequence are given in Admission to a Major Sequence . Enrollment in other required courses is not restricted by completion of the basic sequence.

Courses used to fulfill technical and nontechnical elective requirements must be approved by the petroleum and geosystems engineering faculty and the geological sciences faculty before the student registers for them.

Students must fulfill the Foreign Language Requirement . They must also remove any admission deficiencies in mathematics as described in General Information . A suggested arrangement of courses by semester is given in Suggested Arrangement of Courses .

RequirementsHours
Basic Sequence Courses
Chemistry
CH 301Principles of Chemistry I (part II science and technology)3
CH 302Principles of Chemistry II3
Engineering Mechanics
E M 306Statics3
E M 319Mechanics of Solids3
Geological Sciences
GEO 303Introduction to Geology3
GEO 416KEarth Materials4
GEO 416MSedimentary Rocks4
Mathematics
M 408CDifferential and Integral Calculus (mathematics, quantitative reasoning flag)4
M 408DSequences, Series, and Multivariable Calculus4
M 427KAdvanced Calculus for Applications I (quantitative reasoning flag)4
Petroleum and Geosystems Engineering
PGE 310Formulation and Solution of Geosystems Engineering Problems3
PGE 427Properties of Petroleum Fluids4
PGE 322KTransport Phenomena in Geosystems3
PGE 326Thermodynamics and Phase Behavior3
PGE 333TEngineering Communication (writing flag and ethics and leadership flag)3
Physics
PHY 303KEngineering Physics I (part I science and technology, writing flag)3
PHY 303LEngineering Physics II (part I science and technology, writing flag)3
PHY 103MLaboratory for Physics 303K1
PHY 103NLaboratory for Physics 303L1
Rhetoric and Writing
RHE 306Rhetoric and Writing (English composition)3
Undergraduate Studies
UGS 302First-Year Signature Course (some sections carry a writing flag)3
or UGS 303 First-Year Signature Course
Major Sequence Courses
Geological Sciences
GEO 420KIntroduction to Field and Stratigraphic Methods4
GEO 428Structural Geology4
GEO 476KGroundwater Hydrology (writing flag)4
GEO 376LField Methods in Groundwater Hydrology3
GEO 376SPhysical Hydrology3
Petroleum and Geosystems Engineering
PGE 323KReservoir Engineering I: Primary Recovery3
PGE 323LReservoir Engineering II: Secondary and Tertiary Recovery3
PGE 424Petrophysics4
PGE 365Resource Economics and Valuation3
PGE 368Fundamentals of Well Logging3
PGE 373LGeosystems Engineering Design and Analysis (independent inquiry flag)3
Civil Engineering
C E 357Geotechnical Engineering3
Approved engineering elective3
Approved geosciences technical elective3
Remaining Core Curriculum Courses
E 316LBritish Literature (humanities)3
or E 316M American Literature
or E 316N World Literature
or E 316P Masterworks of Literature
American government6
American history6
Visual and performing arts3
Social and behavioral sciences3
Total Hours132