This is an archived copy of the 2015-16 catalog. To access the most recent version of the catalog, please visit http://catalog.utexas.edu/.

Department of Mathematics

The Department of Mathematics offers a wide variety of courses both for math majors and for non-majors. Students interested in mathematics as a first or second major should consult the advisers in the Mathematics, Physics, and Astronomy Advising Center, in RLM 4.101.

Course prerequisites are enforced. Most entry-level mathematics courses have an appropriate score on the mathematics placement exam as a prerequisite.  In such courses, students must be prepared to present proof of their score immediately after classes have begun; those unable to meet the score will be dropped.

Students may check the current Course Schedule  or go to the Department of Mathematics Web site  for details about the prerequisite required for their course.

Students who plan to use transfer credit to meet the prerequisite of a mathematics course must submit an official transcript to the Office of Admissions so that the credit may be added to their official university record.  In addition to sending a transcript, students are encouraged to retain hard copies of their grade reports for proof of prerequisite until their transcripts are processed.

Students who wish to enroll in conference courses in the Department of Mathematics must submit consent of instructor forms to the department before registering.  Forms are available in the Advising Center.

The information in parentheses after a course number is the Texas Common Course Numbering (TCCN) designation.  Only TCCN designations that are exact semester-hour equivalents of University courses are listed here.  Additional TCCN information is given in Appendix A .

Actuarial Foundations: ACF

Lower-Division Courses

ACF 110C, 210C, 310C, 410C. Conference Course.

Supervised study of selected subjects by individual arrangement with department and instructor. Conference course. May be repeated for credit. Prerequisite: Written consent of instructor.

ACF 110T. Conference Course: Texas Department of Insurance Internship.

Supervised internship at the Texas Department of Insurance. Conference course. May be repeated for credit. Admission by application only. Students must apply to the director of the concentration in actuarial studies the semester before they take the course.

ACF 112M. Actuarial Laboratory on Probability and Statistics.

Problems and supplementary instruction in probability and statistics, especially as required for the Society of Actuaries and Casualty Actuarial Society Exam 110. Three laboratory hours a week for one semester. Prerequisite: Mathematics 362K, credit or registration for Mathematics 378K, and consent of the director of the concentration in actuarial studies.

Upper-Division Courses

ACF 329. Theory of Interest.

Measurement of interest, present and accumulated value, amortization, sinking funds, bonds, duration, and immunization. Covers the interest-theory portion of an exam of the Society of Actuaries and the Casualty Actuarial Society. Three lecture hours a week for one semester. Actuarial Foundations 329 and Mathematics 389F may not both be counted. Prerequisite: Mathematics 408D, 308L, 408L, or 408S with a grade of at least C-.

ACF 129D. Introductory Actuarial Financial Mathematics.

Introductory analysis of financial derivatives. Covers the financial derivatives portion of the syllabus for the professional actuarial exam on financial mathematics. One lecture hour a week for one semester. Offered on the pass/fail basis only. Prerequisite: Credit with a grade of at least C- or registration for Actuarial Foundations 329.

Mathematics: M

Lower-Division Courses

M 301 (TCCN: MATH 1314). College Algebra.

Subjects include a brief review of elementary algebra; linear, quadratic, exponential, and logarithmic functions; polynomials; systems of linear equations; applications. Three lecture hours a week for one semester. Usually offered only in the summer session. May not be counted toward a degree in mathematics. Credit for Mathematics 301 may not be earned after a student has received credit for any calculus course with a grade of C- or better. Prerequisite: A passing score on the mathematics section of the Texas Higher Education Assessment (THEA) test (or an appropriate assessment test).

M 302 (TCCN: MATH 1332). Introduction to Mathematics.

Intended primarily for general liberal arts students seeking knowledge of the nature of mathematics as well as training in mathematical thinking and problem solving. Topics include number theory and probability; additional topics are chosen by the instructor. Three lecture hours a week for one semester. Mathematics 302 and 303F may not both be counted. A student may not earn credit for Mathematics 302 after having received credit for any calculus course. May not be counted toward a degree in the College of Natural Sciences. Prerequisite: Texas Success Initiative (TSI) exemption or a TSI Mathematics Assessment score of 350 or higher

M 303D (TCCN: MATH 1324). Applicable Mathematics.

An entry-level course for the nontechnical student, dealing with some of the techniques that allow mathematics to be applied to a variety of problems. Topics include linear and quadratic equations, systems of linear equations, matrices, probability, statistics, exponential and logarithmic functions, and mathematics of finance. Three lecture hours a week for one semester. Mathematics 303D and 303F may not both be counted. A student may not earn credit for Mathematics 303D after having received credit for Mathematics 305G or any calculus course. May not be counted toward a degree in the College of Natural Sciences. Prerequisite: An appropriate score on the mathematics placement exam.

M 303F. Mathematics of Investment.

Simple and compound interest, equivalent rates, equivalent values, annuities, amortization, sinking funds, bonds, depreciation. Three lecture hours a week for one semester. Mathematics 302 and 303F may not both be counted; Mathematics 303D and 303F may not both be counted. May not be counted toward the major requirement for the Bachelor of Arts, Plan I, degree with a major in mathematics or toward the Bachelor of Science in Mathematics degree. Prerequisite: Three units of high school mathematics at the level of Algebra I or higher.

M 403K (TCCN: MATH 1425). Calculus I for Business and Economics.

Differential and integral calculus of algebraic, logarithmic, and exponential functions with applications. Three lecture hours and two discussion sessions a week for one semester. Only one of the following may be counted: Mathematics 403K, 408C, 408K, 408N. May not be counted toward a degree in the College of Natural Sciences. Prerequisite: An appropriate score on the mathematics placement exam.

M 403L. Calculus II for Business and Economics.

Differential and integral calculus of functions of several variables with applications, infinite series, improper integrals; introductions to probability, differential equations, matrices, systems of linear equations, and linear programming. Three lecture hours and two discussion sessions a week for one semester. Mathematics 403L and 408L (or 308L) may not both be counted. May not be counted toward the major requirement for the Bachelor of Arts, Plan I, degree with a major in mathematics or toward the Bachelor of Science in Mathematics degree. Prerequisite: Mathematics 403K, 408C, 308L, or 408N with a grade of at least C-.

M 305E. Analytic Geometry.

Combines development of methods (including adequate treatment of theory) and acquisition of skills with applications. Three lecture hours a week for one semester. Mathematics 305E and 305K may not both be counted. Mathematics 305E and 305G may not both be counted toward the major requirement for the Bachelor of Arts, Plan I, degree with a major in Mathematics or towards the Bachelor of Science in Mathematics degree. Prerequisite: Mathematics 301.

M 305G (TCCN: MATH 2312). Preparation for Calculus.

Study of advanced functions and their graphs and applications, including exponential, logarithmic, and trigonometric functions. Introduction to rates, slopes, and derivatives. Three lecture hours a week for one semester. Mathematics 305G (or 505G) and any college-level trigonometry course may not both be counted. A student may not earn credit for Mathematics 305G (or 505G) after having received credit for any calculus course with a grade of at least C-. Mathematics 301, 305G (or 505G), and equivalent courses may not be counted toward a degree in mathematics. Prerequisite: An appropriate score on the mathematics placement exam.

M 408C (TCCN: MATH 2417). Differential and Integral Calculus.

Introduction to the theory and applications of differential and integral calculus of functions of one variable; topics include limits, continuity, differentiation, the mean value theorem and its applications, integration, the fundamental theorem of calculus, and transcendental functions. Three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403K, 408C, 408K, 408N. Prerequisite: An appropriate score on the mathematics placement exam.

M 408D (TCCN: MATH 2419). Sequences, Series, and Multivariable Calculus.

Certain sections of this course are designated as advanced placement or honors sections; they are restricted to students who have scored well on the Advanced Placement Calculus BC exam or have the consent of the mathematics adviser. This is the second semester of the accelerated calculus sequence. The theory and applications of sequences and infinite series, including those involving functions of one variable, and an introduction to the theory and applications of differential and integral calculus of functions of several variables; subjects include methods of integration, parametric equations, sequences, infinite series, power series, functions of several variables, partial derivatives, and multiple integrals. Three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403L, 408D, 408M (or 308M). Prerequisite: Mathematics 408C, 408L, or 408S with a grade of at least C-.

M 408K (TCCN: MATH 2413). Differential Calculus.

Introduction to the theory and applications of differential calculus of functions of one variable; topics include limits, continuity, differentiation, and the mean value theorem and its applications. Three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403K, 408C, 408K, 408N. Prerequisite: An appropriate score on the mathematics placement exam.

M 308L, 408L. Integral Calculus.

Introduction to the theory and applications of integral calculus of functions of one variable; topics include integration, the fundamental theorem of calculus, transcendental functions, sequences, and infinite series. For Mathematics 308L, three lecture hours a week for one semester; for 408L, three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403L, 408L (or 308L), 408S. Prerequisite: Mathematics 408C, 408K, or 408N with a grade of at least C-.

M 308M, 408M. Multivariable Calculus.

Introduction to the theory and applications of differential and integral calculus of functions of several variables. Includes parametric equations, polar coordinates, vectors, vector calculus, functions of several variables, partial derivatives, gradients, and multiple integrals. For Mathematics 308M, three lecture hours a week for one semester; for 408M, three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403L, 408D, 408M (or 308M). Prerequisite: Mathematics 408L or 408S with a grade of at least C-.

M 408N (TCCN: MATH 2413). Differential Calculus for Science.

Restricted to students in the College of Natural Sciences. Introduction to the theory of differential calculus of functions of one variable, and its application to the natural sciences. Subjects may include limits and differentiation, with applications to rates of change, extremes, graphing, and exponential growth and decay. Three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403K, 408C, 408K, 408N. Prerequisite: An appropriate score on the mathematics placement exam.

M 408R. Differential and Integral Calculus for the Sciences.

A calculus course for students in the life sciences. Emphasizes representations and analysis of data. Subjects include functions, rates, and derivatives and their applications to problems in biology; differential equations; Riemann integrals; the Euler method; and fundamental theorems of calculus. Three lecture hours and two discussion hours a week for one semester. May not be counted by students with credit for Mathematics 408C, 408K, or 408N. Prerequisite: An appropriate score on the mathematics placement exam.

M 408S (TCCN: MATH 2414). Integral Calculus for Science.

Restricted to students in the College of Natural Sciences. Introduction to the theory of integral calculus of functions of one variable, and its applications to the natural sciences. Subjects may include integration and its application to area and volume, and transcendental functions, sequences, and series and their application to numerical methods. Three lecture hours and two discussion hours a week for one semester. Only one of the following may be counted: Mathematics 403L, 408L (or 308L), 408S. Prerequisite: Mathematics 408C, 408K, or 408N with a grade of at least C-.

M 110C, 210C, 310C, 410C. Conference Course.

Supervised study in mathematics, with hours to be arranged. May be repeated for credit. Prerequisite: Written consent of instructor; forms are available in the department office or in the Mathematics, Physics, and Astronomy Advising Center.

M 210E. Emerging Scholars Seminar.

Restricted to students in the Emerging Scholars Program. Supplemental problem-solving laboratory for precalculus, calculus, or advanced calculus courses for students in the Emerging Scholars Program. Three or four laboratory hours a week for one semester. May be repeated for credit. Offered on the pass/fail basis only.

M 310P. Modern Mathematics: Plan II.

Restricted to Plan II students. Significant developments in modern mathematics. Topics may include fractals, the fourth dimension, statistics and society, and techniques for thinking about quantitative problems. Three lecture hours a week for one semester. May not be counted toward a degree in mathematics.

M 110T, 210T, 310T, 410T. Topics in Mathematics.

One, two, three, or four lecture hours a week for one semester. May be repeated for credit when the topics vary.

M 315C. Foundations, Functions, and Regression Models.

In-depth study of topics from secondary school mathematics. Emphasizes the development of the concept of function, exploring function patterns in data sets, and the connections between the main topics of mathematics associated with a secondary school curriculum. Use of appropriate technology is explored. Three lecture hours a week for one semester. Prerequisite: Credit or registration for Mathematics 408C and enrollment in a teaching preparation program, or consent of instructor.

M 316 (TCCN: MATH 1342, MATH 2342). Elementary Statistical Methods.

Graphical presentation, frequency functions, distribution functions, averages, standard deviation, variance, curve-fitting, and related topics. Three lecture hours a week for one semester. Only one of the following may be counted: Mathematics 316, Statistics and Scientific Computation 303, 304, 305, 306. Prerequisite: An appropriate score on the mathematics placement exam.

M 316K (TCCN: MATH 1350). Foundations of Arithmetic.

Restricted to students in a teacher preparation program. An analysis, from an advanced perspective, of the concepts and algorithms of arithmetic, including sets; numbers; numeration systems; definitions, properties, and algorithms of arithmetic operations; and percents, ratios, and proportions. Problem solving is stressed. Three lecture hours a week for one semester. May not be counted toward the major requirement for the Bachelor of Arts, Plan I, degree with a major in mathematics or toward the Bachelor of Science in Mathematics degree. Credit for Mathematics 316K may not be earned after the student has received credit for any calculus course with a grade of C- or better, unless the student is registered in the College of Education. Prerequisite: Mathematics 302, 303D, 305G (or 505G), or 316 with a grade of at least C-.

M 316L (TCCN: MATH 1351). Foundations of Geometry, Statistics, and Probability.

Restricted to students in a teacher preparation program. An analysis, from an advanced perspective, of the basic concepts and methods of geometry, statistics, and probability, including representation and analysis of data; discrete probability, random events, and conditional probability; measurement; and geometry as approached through similarity and congruence, through coordinates, and through transformations. Problem solving is stressed. Three lecture hours a week for one semester. May not be counted toward the major requirement for the Bachelor of Arts, Plan I, degree with a major in mathematics or toward the Bachelor of Science in Mathematics degree. Credit for Mathematics 316L may not be earned after the student has received credit for any calculus course with a grade of C- or better, unless the student is registered in the College of Education. Prerequisite: Mathematics 316K with a grade of at least C.

M 119S, 219S, 319S, 419S, 519S, 619S, 719S, 819S, 919S. Topics in Mathematics.

This course is used to record credit the student earns while enrolled at another institution in a program administered by the University's Study Abroad Office. Credit is recorded as assigned by the study abroad adviser in the Department of Mathematics. University credit is awarded for work in an exchange program; it may be counted as coursework taken in residence. Transfer credit is awarded for work in an affiliated studies program. May be repeated for credit when the topics vary.

Upper-Division Courses

M 325K. Discrete Mathematics.

Provides a transition from the problem-solving approach of Mathematics 408C and 408D to the rigorous approach of advanced courses. Subjects include logic, set theory, relations and functions, combinatorics, and graph theory and graph algorithms. Three lecture hours a week for one semester. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-.

M 326K. Foundations of Number Systems.

Restricted to students in a teacher preparation program or who have consent of instructor. Study of number-related topics in middle-grade and secondary school mathematics. Topics include place value; meanings of arithmetic operations; analysis of computation methods; historical development of number concepts and notation; and rational, irrational, algebraic, transcendental, and complex numbers. Emphasis is on communicating mathematics, developing pedagogical understanding of concepts and notation, and using both informal reasoning and proof. Three lecture hours a week for one semester. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-.

M 427J. Differential Equations with Linear Algebra.

Ordinary differential equations, introduction to vector spaces, linear operators and eigenvalues, systems of linear differential equations, introduction to partial differential equations and Fourier series. Five lecture hours a week for one semester. Mathematics 427J and 427K may not both be counted. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-.

M 427K. Advanced Calculus for Applications I.

Ordinary and partial differential equations and Fourier series. Five lecture hours a week for one semester. Mathematics 427J and 427K may not both be counted. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-.

M 427L. Advanced Calculus for Applications II.

Matrices, elements of vector analysis and calculus of functions of several variables, including gradient, divergence, and curl of a vector field, multiple integrals and chain rules, length and area, line and surface integrals, Green's theorems in the plane and space, and, if time permits, complex analysis. Five class hours a week for one semester. Prerequisite: Mathematics 408D or 408M with a grade of at least C-.

M 328K. Introduction to Number Theory.

Provides a transition from the problem-solving approach of Mathematics 408C and 408D to the rigorous approach of advanced courses. Properties of the integers, divisibility, linear and quadratic forms, prime numbers, congruences and residues, quadratic reciprocity, number theoretic functions. Three lecture hours a week for one semester. Prerequisite: Mathematics 341 with a grade of at least C-.

M 129S, 229S, 329S, 429S, 529S, 629S, 729S, 829S, 929S. Topics in Mathematics.

This course is used to record credit the student earns while enrolled at another institution in a program administered by the University's Study Abroad Office. Credit is recorded as assigned by the study abroad adviser in the Department of Mathematics. University credit is awarded for work in an exchange program; it may be counted as coursework taken in residence. Transfer credit is awarded for work in an affiliated studies program. May be repeated for credit when the topics vary.

M 329W. Cooperative Mathematics.

This course covers the work period of mathematics students in the Cooperative Education program, which provides supervised work experience by arrangement with the employer and the supervising instructor. Forty laboratory hours a week for one semester. The student must repeat the course each work period and must take it twice to receive credit toward the degree; at least one of these registrations must be during a long-session semester. No more than three semester hours may be counted toward the major requirement; no more than six semester hours may be counted toward the degree. The student's first registration must be on the pass/fail basis. Prerequisite: Application through the College of Natural Sciences Career Design Center; Mathematics 408D, 408L, or 408S with a grade of at least C-; a grade of at least C- in two of the following courses: Mathematics 325K, 427J or 427K, 341, 362K, or 378K; and consent of the undergraduate adviser.

M 333L. Structure of Modern Geometry.

Axiom systems, transformational geometry, introduction to non-Euclidean geometries, and other topics in geometry; use of these ideas in teaching geometry. Three lecture hours a week for one semester. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-; or upper-division standing and consent of instructor.

M 339D. Introduction to Financial Mathematics for Actuaries.

Covers the financial derivative topics on the Society of Actuary FM/2 exam: general derivatives, options, hedging, investment strategies, forwards, futures, and swaps. Covers option pricing techniques in the MFE/3F exam: binomial option pricing, Monte Carlo Valuation using risk neutral probabilities, and Black-Scholes. Three lecture hours a week for one semester. Prerequisite: Actuarial Foundations 329 and Mathematics 362K with a grade of at least C-.

M 339J. Probability Models with Actuarial Applications.

Introductory actuarial models for life insurance, property insurance, and annuities. With Mathematics 349P, covers the syllabus for the professional actuarial exam on model construction. Three lecture hours a week for one semester. Prerequisite: Mathematics 358K or 378K with a grade of at least C-.

M 139S. Seminar on Actuarial Practice.

Presentations by working actuaries on current issues in actuarial practice. One lecture hour a week for one semester. Offered on the pass/fail basis only. Prerequisite: Actuarial Foundations 329; Mathematics 339J or 339U with a grade of at least C-; and credit with a grade of at least C- or registration for one of the following: Mathematics 339J, 339U, 339V, 349P (or 449P).

M 339U. Actuarial Contingent Payments I.

Intermediate actuarial models for life insurance, property insurance, and annuities. Three lecture hours a week for one semester. Prerequisite: Mathematics 362K with a grade of at least C-; credit with a grade of at least C- or registration for Actuarial Foundations 329; and credit with a grade of at least C- or registration for Mathematics 340L or 341.

M 339V. Actuarial Contingent Payments II.

Advanced actuarial models for life insurance, property insurance, and annuities. Three lecture hours a week for one semester. Prerequisite: Actuarial Foundations 329 and Mathematics 339U with a grade of at least C- in each.

M 339W. Financial Mathematics for Actuarial Applications.

Pricing, stock price, and interest rate models for actuarial applications. Tools include lognormal distribution, Brownian motion, Black-Scholes, and delta hedging. Three lecture hours a week for one semester. Prerequisite: Mathematics 339D with a grade of at least C-.

M 340L. Matrices and Matrix Calculations.

Restricted to nonmathematics majors. Techniques of matrix calculations and applications of linear algebra. Three lecture hours a week for one semester. Mathematics 340L and 341 may not both be counted. Prerequisite: Mathematics 408C, 408K, or 408N with a grade of at least C-.

M 341. Linear Algebra and Matrix Theory.

Restricted to mathematics majors. Vector spaces, linear transformations, matrices, linear equations, determinants. Some emphasis on rigor and proofs. Mathematics 340L and 341 may not both be counted. Prerequisite: Mathematics 408D or 408M with a grade of at least C-.

M 343K. Introduction to Algebraic Structures.

Elementary properties of groups and rings, including symmetric groups, properties of the integers, polynomial rings, elementary field theory. Three lecture hours a week for one semester. Students who have received a grade of C- or better in Mathematics 373K may not take Mathematics 343K. Prerequisite: Consent of the undergraduate adviser, or two of the following courses with a grade of at least C- in each: Mathematics 325K or Philosophy 313K, Mathematics 328K, Mathematics 341.

M 343L. Applied Number Theory.

Basic properties of integers, including properties of prime numbers, congruences, and primitive roots. Introduction to finite fields and their vector spaces with applications to encryption systems and coding theory. Three lecture hours a week for one semester. Prerequisite: Mathematics 328K or 343K with a grade of at least C-.

M 343M. Error-Correcting Codes.

Introduction to applications of algebra and number theory to error-correcting codes, including finite fields, error-correcting codes, vector spaces over finite fields, Hamming norm, coding, and decoding. Three lecture hours a week for one semester. Prerequisite: Mathematics 328K or 341 with a grade of at least C-.

M 344K. Intermediate Symbolic Logic.

Same as Philosophy 344K. A second-semester course in symbolic logic: formal syntax and semantics, basic metatheory (soundness, completeness, compactness, and Loewenheim-Skolem theorems), and further topics in logic. Three lecture hours a week for one semester. Prerequisite: Philosophy 313, 313K, or 313Q.

M 346. Applied Linear Algebra.

Emphasis on diagonalization of linear operators and applications to dynamical systems and ordinary differential equations. Other subjects include inner products and orthogonality, normal mode expansions, vibrating strings and the wave equation, and Fourier series. Three lecture hours a week for one semester. Prerequisite: Mathematics 341 or 340L with a grade of at least C-.

M 348. Scientific Computation in Numerical Analysis.

Introduction to mathematical properties of numerical methods and their applications in computational science and engineering. Introduction to object-oriented programming in an advanced language. Study and use of numerical methods for solutions of linear systems of equations; nonlinear least-squares data fitting; numerical integration; and solutions of multidimensional nonlinear equations and systems of initial value ordinary differential equations. Three lecture hours a week for one semester. Prerequisite: Computer Science 303E or 307, and Mathematics 341 or 340L with a grade of at least C-.

M 349P. Actuarial Statistical Estimates.

Statistical estimation procedures for random variables and related quantities in actuarial models. With Mathematics 339J, covers the syllabus for the professional actuarial exam on model construction. Three lecture hours a week for one semester. Prerequisite: Mathematics 339J, and 341 or 340L, with a grade of at least C- in each.

M 349R. Applied Regression and Time Series.

Introduction to simple and multiple linear regression and to elementary time-series models, including auto-regressive and moving-average models. Emphasizes fitting models to data, evaluating models, and interpreting results. Three lecture hours a week for one semester. Prerequisite: Mathematics 358K or 378K with a grade of at least C-, or an introductory statistics course and consent of the director of the concentration in actuarial studies.

M 349T. Time Series and Survival-Model Estimation.

Introduction to the probabilistic and statistical properties of time series; parameter estimation and hypothesis testing for survival models. Covers 30 percent of the syllabus for exam #4 of the Society of Actuaries and the Casualty Actuarial Society. Three lecture hours a week for one semester. Prerequisite: Mathematics 339U, 341 or 340L, and 358K or 378K.

M 358K. Applied Statistics.

Exploratory data analysis, correlation and regression, data collection, sampling distributions, confidence intervals, and hypothesis testing. Three lecture hours a week for one semester. Prerequisite: Mathematics 362K with a grade of at least C-.

M 360M. Mathematics as Problem Solving.

Discussion of heuristics, strategies, and methods of evaluating problem solving, and extensive practice in both group and individual problem solving. Communicating mathematics, reasoning, and connections among topics in mathematics are emphasized. Three lecture hours a week for one semester. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-; and written consent of instructor.

M 361. Theory of Functions of a Complex Variable.

Elementary theory and applications of analytic functions, series, contour integration, and conformal mappings. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J, 427K, or 427L with a grade of at least C-.

M 361K. Introduction to Real Analysis.

A rigorous treatment of the real number system, of real sequences, and of limits, continuity, derivatives, and integrals of real-valued functions of one real variable. Three lecture hours a week for one semester. Students who have received a grade of C- or better in Mathematics 365C may not take Mathematics 361K. Prerequisite: Consent of the undergraduate adviser, or two of the following courses with a grade of at least C- in each: Mathematics 325K or Philosophy 313K, Mathematics 328K, Mathematics 341.

M 362K. Probability I.

An introduction to the mathematical theory of probability, fundamental to further work in probability and statistics, includes basic probability properties, conditional probability and independence, various discrete and continuous random variables, expectation and variance, central limit theorem, and joint probability distributions. Three lecture hours a week for one semester. Mathematics 362K and Statistics and Scientific Computation 321 may not both be counted. Prerequisite: Mathematics 408D, 408L, or 408S with a grade of at least C-.

M 362M. Introduction to Stochastic Processes.

Introduction to Markov chains, birth and death processes, and other topics. Three lecture hours a week for one semester. Prerequisite: Mathematics 362K with a grade of at least C-.

M 364K. Vector and Tensor Analysis I.

Invariance, vector algebra and calculus, integral theorems, general coordinates, introductory differential geometry and tensor analysis, applications. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J, 427K, or 427L with a grade of at least C-.

M 364L. Vector and Tensor Analysis II.

Continuation of Mathematics 364K, with emphasis on tensor and extensor analysis. Riemannian geometry and invariance. Three lecture hours a week for one semester. Prerequisite: Mathematics 364K with a grade of at least C-.

M 365C. Real Analysis I.

A rigorous treatment of the real number system, Euclidean spaces, metric spaces, continuity of functions in metric spaces, differentiation and Riemann integration of real-valued functions of one real variable, and uniform convergence of sequences and series of functions. Three lecture hours a week for one semester. Students who have received a grade of C- or better in Mathematics 365C may not take Mathematics 361K. Prerequisite: Consent of the undergraduate adviser, or two of the following courses with a grade of at least C- in each: Mathematics 325K or Philosophy 313K, Mathematics 328K, Mathematics 341. Students who receive a grade of C- in one of the prerequisite courses are advised to take Mathematics 361K before attempting 365C. Students planning to take Mathematics 365C and 373K concurrently should consult a mathematics adviser.

M 365D. Real Analysis II.

Recommended for students planning to undertake graduate work in mathematics. A rigorous treatment of selected topics in real analysis, such as Lebesgue integration, or multivariate integration and differential forms. Three lecture hours a week for one semester. Prerequisite: Mathematics 365C with a grade of at least C-.

M 365G. Curves and Surfaces.

Calculus applied to curves and surfaces in three dimensions: curvature and torsion of space curves, Gauss map and curvature of surfaces, Gauss theorem, geodesics, and the Gauss-Bonnet theorem. Three lecture hours a week for one semester. Prerequisite: Credit with a grade of at least C- or registration for Mathematics 365C.

M 367K. Topology I.

An introduction to topology, including sets, functions, cardinal numbers, and the topology of metric spaces. Three lecture hours a week for one semester. Prerequisite: Mathematics 361K or 365C or consent of instructor.

M 367L. Topology II.

Various topics in topology, primarily of a geometric nature. Three lecture hours a week for one semester. Prerequisite: Mathematics 367K with a grade of at least C- or consent of instructor.

M 368K. Numerical Methods for Applications.

Continuation of Mathematics 348. Topics include splines, orthogonal polynomials and smoothing of data, iterative solution of systems of linear equations, approximation of eigenvalues, two-point-boundary value problems, numerical approximation of partial differential equations, signal processing, optimization, and Monte Carlo methods. Three lecture hours a week for one semester. Only one of the following may be counted: Computer Science 367, Mathematics 368K, Physics 329. Prerequisite: Mathematics 348 with a grade of at least C-.

M 372. Fourier Series and Boundary Value Problems.

Discussion of differential equations of mathematical physics and representation of solutions by Green's functions and eigenfunction expansions. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J or 427K with a grade of at least C-.

M 372K. Partial Differential Equations and Applications.

Partial differential equations as basic models of flows, diffusion, dispersion, and vibrations. Topics include first- and second-order partial differential equations and classification (particularly the wave, diffusion, and potential equations), and their origins in applications and properties of solutions. Includes the study of characteristics, maximum principles, Green's functions, eigenvalue problems, and Fourier expansion methods. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J or 427K with a grade of at least C-.

M 373K. Algebraic Structures I.

A study of groups, rings, and fields, including structure theory of finite groups, isomorphism theorems, polynomial rings, and principal ideal domains. Three lecture hours a week for one semester. Students who have received a grade of C- or better in Mathematics 373K may not take Mathematics 343K. Prerequisite: Consent of the undergraduate adviser, or two of the following courses with a grade of at least C- in each: Mathematics 325K or Philosophy 313K, Mathematics 328K, Mathematics 341. Students who receive a grade of C- in one of the prerequisite courses are advised to take Mathematics 343K before attempting 373K. Students planning to take Mathematics 365C and 373K concurrently should consult a mathematics adviser.

M 373L. Algebraic Structures II.

Recommended for students planning to undertake graduate work in mathematics. Topics from vector spaces and modules, including direct sum decompositions, dual spaces, canonical forms, and multilinear algebra. Three lecture hours a week for one semester. Prerequisite: Mathematics 373K with a grade of at least C-.

M 374. Fourier and Laplace Transforms.

Operational properties and application of Laplace transforms; some properties of Fourier transforms. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J or 427K with a grade of at least C-.

M 374G. Linear Regression Analysis.

Fitting of linear models to data by the method of least squares, choosing best subsets of predictors, and related materials. Three lecture hours a week for one semester. Prerequisite: Mathematics 358K or 378K with grade of at least C-, Mathematics 341 or 340L, and consent of instructor.

M 374K. Fourier and Laplace Transforms.

Continuation of Mathematics 374. Introduction to other integral transforms, such as Hankel, Laguerre, Mellin, Z. Three lecture hours a week for one semester. Prerequisite: Mathematics 374 with a grade of at least C-.

M 374M. Mathematical Modeling in Science and Engineering.

Tools for studying differential equations and optimization problems that arise in the engineering and physical sciences. Includes dimensional analysis and scaling, regular and singular perturbation methods, optimization and calculus of variations, and stability. Three lecture hours a week for one semester. Prerequisite: Mathematics 427J or 427K, and 340L or 341, with a grade of at least C- in each; and some basic programming skills.

M 175, 275, 375, 475. Conference Course.

Supervised study in mathematics, with hours to be arranged. May be repeated for credit. Prerequisite: Upper-division standing.

M 375C. Conference Course (Computer-Assisted).

Supervised study in mathematics on material requiring use of computing resources, with hours to be arranged. Conference course. May be repeated for credit when the topics vary. Prerequisite: Varies with the topic.

M 375D. Discovery: An Introduction to Advanced Study in Mathematics.

Capstone course designed primarily for UTeach pre-service mathematics majors considering discovery teaching methodology and/or graduate work in mathematics or mathematics education. Ties together foundational topics in the primary strands of mathematics present in a typical graduate mathematics program; included are selected topics from analysis, algebra, number theory, and topology. Three lecture hours a week for one semester. Mathematics 375D and 375T (Topic: Discovery: An Introduction to Advanced Study in Mathematics) may not both be counted. Prerequisite: Two proof-based mathematics courses with a grade of at least C-, or consent of instructor.

M 175S. Seminar in Instruction of Mathematics.

An exploration of subjects in mathematics instruction as taught at the secondary educational level. Practice learning and teaching through use of proofs, explorations, and connections. Subjects include foundational mathematics concepts, numbers, constructibility, and development of key mathematics topics. One lecture hour a week for one semester. Mathematics 175S and 175T may not both be counted. Offered on the letter-grade basis only. Prerequisite: Upper-division standing and consent of instructor.

M 175T, 275T, 375T, 475T. Topics in Mathematics.

One, two, three, or four lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Upper-division standing; additional prerequisites vary with the topic.

M 376C. Methods of Applied Mathematics.

Variational methods and related concepts from classical and modern applied mathematics. Models of conduction and vibration that lead to systems of linear equations and ordinary differential equations, eigenvalue problems, initial and boundary value problems for partial differential equations. Topics may include a selection from diagonalization of matrices, eigenfunctions and minimization, asymptotics of eigenvalues, separation of variables, generalized solutions, and approximation methods. Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Mathematics 427J or 427K, and 340L or 341, with a grade of at least C- in each.

M 378K. Introduction to Mathematical Statistics.

Same as Statistics and Data Sciences 378. Sampling distributions of statistics, estimation of parameters (confidence intervals, method of moments, maximum likelihood, comparison of estimators using mean square error and efficiency, sufficient statistics), hypothesis tests (p-values, power, likelihood ratio tests), and other topics. Three lecture hours a week for one semester. Only one the following may be counted: Mathematics 378K, Statistics and Data Sciences 378, Statistics and Scientific Computation 378. Prerequisite: Mathematics 362K with a grade of at least C-.

M 379H. Honors Tutorial Course.

Directed reading, research, and/or projects, under the supervision of a faculty member, leading to an honors thesis. Conference course. Prerequisite: Admission to the Mathematics Honors Program; Mathematics 365C, 367K, 373K, or 374G with a grade of at least A-, and another of these courses with a grade of at least B-; and consent of the honors adviser.