NEU - Neuroscience

Neuroscience: NEU

Lower-Division Courses

NEU 320. Introduction to Neuroscience.
Introduction to the nervous system with an emphasis on brain organization, neuron physiology, perceptual systems, and motor systems. Designed for non-neuroscience majors. Three lecture hours a week for one semester.

NEU 330. Neural Systems I.
Restricted to neuroscience majors. Introduction to the nervous system with an emphasis on brain organization, neuron physiology, perceptual systems, and motor systems. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 337 (Topic: Neural Systems I), 371M, Neuroscience 330, 365R, 371M.

NEU 335. Neural Systems II.
Introduction to the nervous system with an emphasis on neural development and on the neural mechanisms of memory, emotions, and other higher cognitive functions. Intended for neuroscience majors and those considering neuroscience as a major. Three lecture hours a week for one semester. Biology 337 (Topic: Neural Systems II) and Neuroscience 335 may not both be counted. Prerequisite: A grade of at least C- in the following: Biology 206L, and 311D or 325H, Mathematics 408C or 408S, and Neuroscience 330.

NEU 337, 237, 337, 437. Selected Topics in Neuroscience.
Topics include recent developments and research methods in the field of neuroscience. For each semester hour of credit earned, one lecture hour a week for one semester. Some topics may require additional hours. May be repeated for credit when the topics vary. Prerequisite: Neuroscience 335 with a grade of at least C-.

 Topic 3: Neuroscience for Plan II. Restricted to Plan II students. Neuroscience 337 (Topic: Tpcs in Neuroscience: Plan II) and 137, 237, 337, 437 (Topic 3) may not both be counted.

 Topic 6: Rigor in Neuroscience. Explore the application and integration of many different approaches, from molecules to behavior. Includes statistics, experimental design, and philosophy of science with a mixture of discussion and hands-on training. Neuroscience 337 (Topic: Rigor in Neuroscience) and 137, 237, 337, 437 (Topic 6) may not both be counted.

Introduction to quantitative approaches central to the study of the brain, with an emphasis on mathematical and statistical methods required for the rigorous design and interpretation of neuroscience experiments and data. Intended for neuroscience majors and those considering neuroscience as a major. Three lecture hours a week for one semester. Prerequisite: Neuroscience 330 with a grade of at least C-.

NEU 361T. Comparative Animal Physiology.
Examine the physiology of organ systems in animal phyla, with special emphasis on the neural and behavioral adaptations of organisms to their environment. Three lecture hours and one discussion hour a week for one semester. Only one of the following may be counted: Biology 361T, Neuroscience 361T, 337 (Topic: Comparative Animal Physiology). Prerequisite: Biology 325 or 325H with a grade of at least C-.

Introduction to the basic principles of pharmacology, including how drugs get into the body, exert their actions, and are metabolized and excreted. Three lecture hours a week for one semester. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 365L. Neurobiology Laboratory.
An introduction to physiological, morphological, and molecular techniques used for the analysis of the nervous system. Experiments and computer simulations illustrate basics of information processing by the nervous system. Four laboratory hours and one discussion hour a week for one semester. Prerequisite: A grade of at least C- in Neuroscience 335 and Physics 303L, 316, or 317L.

NEU 365N. Nerve Regeneration in Invertebrates and Vertebrates.
Explore degeneration and regeneration in nervous systems following traumatic injury in the context of invertebrate versus vertebrate, peripheral nervous system versus central nervous system, axonal versus cell body, and the role of glia versus neurons. Three lecture hours a week for one semester. Neuroscience 337 (Topic 2) and 365N may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 365P. Programming and Data Analysis for Modern Neuroscience.
Explore the basics of programming, statistics, and machine learning, and apply these techniques to the analysis of data from neuroscience experiments. Three lecture hours a week for one semester. Neuroscience 337 (Topic 4) and 365P may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 365T. Neurobiology of Disease.
The neurobiological basis of disorders of the brain, with the main focus on mental illness. Emphasizes the neural circuitries and neurochemical events that underlie specific mental processes and behaviors. Three lecture hours a week for one semester. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 365V. From the Eye to the Brain.
Explore the physiology of the visual pathway and its relationship to visual perception. Examine the prospects for prevention of blinding eye diseases and the adaptations of primate vision for survival in natural environments. Three lecture hours a week for one semester. Neuroscience 337 (Topic 1) and Neuroscience 365V may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 365W. Neurobiology of Addiction.
Study of the neurobiology of neurotransmitters, and the influence of alcohol and drugs of abuse on neurotransmitters. Three lecture hours a week for one semester. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 366C. Ion Channels and the Molecular Physiology of Neuronal Signaling.
Explores the role of molecular conformational changes in higher-level neuronal function and sensory transduction, including the generation and regulation of diverse types of neuronal signaling characteristics. Emphasizes a quantitative approach and the use of models to study function. Three lecture hours a week for one semester. Prerequisite: A grade of at least C- in Neuroscience 335 and Physics 303L, 316, or 317L.
NEU 366D. Synaptic Physiology and Plasticity.
Detailed study of the physiology of synaptic transmission in the mammalian central nervous system. Covers dendritic integration and various forms and mechanisms of synaptic plasticity. Three lecture hours a week for one semester. Prerequisite: A grade of at least C- in Neuroscience 335 and Physics 303L, 316, or 317L.

NEU 366E. Visual Neuroscience.
Physiology of the visual pathway and its relationship to visual perception; prospects for prevention of blinding eye diseases; adaptations of primate vision for survival in natural environments. Laboratory experiments illustrate basic mechanisms by having students measure their own visual and sensorimotor function. One and one-half lecture hours and three laboratory hours a week for one semester. Neuroscience 366E and 366P may not both be counted. Prerequisite: Statistics and Data Sciences 328M with a grade of at least C- and Biomedical Engineering 365R or Neuroscience 335 with a grade of at least C-.

NEU 466G. Functional and Synaptic Neuroanatomy.
Neuroanatomy and function of synapses as a basis for brain function and behavior. Examine the ultrastructure and function of synapses, dendrites and axons underlying basic synaptic transmission and plasticity. Laboratory projects involve three-dimensional reconstructions from serial section electron microscopy. Three lecture hours and one-and-one-half laboratory hours a week for one semester. Only one of the following may be counted: Biology 337 (Topic: Neurobiology of Synaptic Circuits), 337 (Topic: Human Neuroanatomy), Neuroscience 466G. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 366L. Neuroimaging Laboratory.
Basic principles of image formation and techniques of fluorescent imaging and confocal laser-scanning microscopy. Includes image processing and analysis to extract quantitative information from digital images. Survey of imaging techniques, including electron microscopy and functional MRI. One lecture hour and four laboratory hours a week for one semester. Prerequisite: A grade of at least C- in Neuroscience 335 and Physics 303L, 316, or 317L.

NEU 466M. Quantitative Methods In Neuroscience I.
Overview of the basic mathematical and computational tools central to the analysis of neural systems in a laboratory setting. Subjects include linear algebra, differential equations, filtering, correlation, probability, and inference, with an emphasis on quantitative methodology and applications to neuroscience. Three lecture hours and one and one-half laboratory hours a week for one semester. Prerequisite: Mathematics 408D or 408M, and Neuroscience 335 with a grade of at least C- in each.

NEU 366N. Quantitative Methods In Neuroscience II.
Continuation of Neuroscience 466M. Introduction to basic mathematical and computational tools for the analysis of neural systems. Subjects include computational and quantitative methods, with an emphasis on their applications to neuroscience. Three lecture hours and one laboratory hour a week for one semester. Prerequisite: Neuroscience 466M with a grade of at least C-.

NEU 366P. Laboratory in Psychophysics.
Studies the principles of experimental design, execution, and interpretation by having students measure their own perceptual and behavioral responses to visual and auditory tests. Includes data analysis, statistical significance, and interpretation. Five laboratory hours a week for one semester. Neuroscience 366E and 366P may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 366S. Neuromolecular Genetics and Disease Laboratory.
Explores techniques used to study the molecular genetic basis for nervous system function and disease with a powerful invertebrate model system. Subjects will range from studying the conserved molecular basis for our senses and male/female-specific behaviors, to exploring how mutations of conserved neural genes cause neurological disorders, such as Parkinson’s disease and Alzheimer’s disease. Six laboratory hours a week for one semester Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 367F. Foundations of Human Neuroimaging.
Survey of methods for neuroimaging research. Describes the physics of MRI image acquisition, the physiology of neural responses, and the design and analysis of MRI studies. Three lecture hours a week for one semester. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 367S. Analytical Skepticism.
Examine basic principles that allow accurate interpretation of scientific data, with an emphasis on neuroscience data. Three lecture hours a week for one semester. Neuroscience 337 (Topic S) and 367S may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 367V. Evolutionary Neurobiology.
Examination of the nervous system in an evolutionary context. Three lecture hours a week for one semester. Prerequisite: Biology 325 or 325H and Neuroscience 335 with a grade of at least C-.

NEU 367W. Laboratory in Behavioral Neuroscience.
Behavioral experiments with rodents aimed at elucidating the neural mechanisms of psychological processes such as memory, anxiety, and incentive motivation. One lecture hour and five laboratory hours a week for one semester. Biology 367W and Neuroscience 367W may not both be counted. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 170C, 270C. Topics in Neuroscience.
Supervised study of selected topics in Neuroscience, by individual arrangement with the instructor. For each semester hour of credit earned, the equivalent of one lecture hour a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 371M. Comparative Neuroscience.
The nervous system, with emphasis on vertebrate neurobiology. Three lecture hours and one discussion hour a week for one semester. Only one of the following may be counted: Biology 371M, Neuroscience 330, 365R, 371M. Prerequisite: Neuroscience 335 with a grade of at least C-.

NEU 177, 277, 377, 477. Undergraduate Research.
Laboratory or research in the various fields of neuroscience under the supervision of one or more faculty members. Supervised individual research. Up to three semester hours may be counted toward the major requirement for the Bachelor of Science in Neuroscience. May be repeated for credit. Prerequisite: Neuroscience 335 with a grade of at least C-.

Restricted to students in the honors program in neuroscience. Original laboratory research project under the direction of a faculty mentor leading to a thesis or research presentation. For each semester hour of credit earned, one lecture hour a week for one semester. May be repeated for credit, but no more than six hours may be counted toward a degree in
Graduate Courses

NEU 380C. Computational Neuroscience.
Introduction to computational neuroscience. Examines neural network and learning theory, coding, dynamics, memory, computation, and learning in recurrent and feed forward neural circuits. Three lecture hours a week for one semester. Only one of the following may be counted: Electrical Engineering 385V (Topic: Computational Neuroscience), Neuroscience 380C, 385L (Topic: Computational Neuroscience). Prerequisite: Graduate standing, some differential equations and linear algebra, and consent of instructor.

NEU 380E. Vision Systems.
Introduction to the anatomy, physiology, and psychophysics of human vision from an information-processing and computational perspective. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 380E, 382V, Psychology 380E, 382V. Prerequisite: Graduate standing and consent of instructor.

NEU 080M. Dual MD/PhD Program with UT Medical Branch.
Preclinical medical study at the University of Texas Medical Branch at Galveston. May not be taken concurrently with another course at the University of Texas at Austin. Prerequisite: Graduate standing and admission to the MD/PhD dual degree program in neuroscience.

NEU 380U. Brain, Behavior, and Evolution.
Same as Biology 380U. Integrative approaches to the study of brain and behavior within an evolutionary and comparative framework. Specifically, the integration of neuroscience, organismal behavior and physiology, behavioral ecology, evolutionary development, experimental evolution, molecular biology, genetics, genomics, systems biology, and bioinformatics. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 380U, 384K (Topic: Brain, Behavior, and Evolution), Neuroscience 380U, 385L (Topic: Brain, Behavior, and Evolution). Prerequisite: Graduate standing and consent of instructor and the graduate adviser.

NEU 380V. Biological Foundations of Decision Making.
Same as Biology 380V. Explores the mechanisms biological organisms use to make decisions and how these mechanisms evolved. Defines a conceptual framework for decision making that can be applied across levels of biological organization. Surveys current research on how animals make decisions using genetic, neurobiological, and evolutionary approaches. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 380V, 384K (Topic: Brain, Behavior, and Evolution), Neuroscience 380V, 385L (Topic: Biological Foundations of Decision Making). Prerequisite: Graduate standing.

NEU 381G. Grant Writing in the Behavioral and Biological Sciences.
Same as Psychology 381G. Introduction to grant writing in the behavioral and biological sciences and development of grant writing skills. Subjects include: finding grant opportunities, planning proposal activities, successful grant writing strategies, and how to talk to grant program officers. Write grant proposals (e.g., proposals to federal agencies such as NSF or NIH) and revise proposals based on peer and instructor feedback. Explore how grant proposals are reviewed by participating in a mock review session. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 381G, 394P (Topic: Grant Writing in the Behavioral and Biological Sciences), Psychology 381G, 394U (Topic: Grant Writing in the Behavioral and Biological Sciences). Prerequisite: Graduate standing and consent of instructor.

NEU 381N. Basic Processes of Nerve Cells.
Same as Biology 381N. Degeneration and regeneration in nervous systems following traumatic injury; invertebrate versus vertebrate, peripheral nervous system versus central nervous system, axonal versus cell body, role of glia versus neurons. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 381N, 381K (Topic: 10), 381N, Neuroscience 381N, 385L (Topic 1). Prerequisite: Graduate standing.

NEU 381V. Mechanisms of Vision.
Physiology of the eye, the retina, and the visual pathways. Prospects for nutritional prevention of blinding eye diseases. Functional and ecological adaptations of primate and nonprimate vision. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 380G, 381V, 385L (Topic: Visual Neuroscience). Prerequisite: Graduate standing and consent of instructor.

NEU 382E. Epigenetics.
Same as Biology 382E. Study of how epigenetic modifications are covalent modifications of DNA or histones that cause changes in gene expression and how epigenetic modifications appear to be a method through which nurture or the environment can influence nature. Emphasis on how experience or environmental factors epigenetically modify health or behavior of animals. Three lecture hours a week for one semester. Only one of the following may be counted: Biology 381K (Topic: Epigenetics), 382E, Neuroscience 382E. Offered on the letter-grade basis only. Prerequisite: Graduate standing and consent of instructor.

NEU 182T, 282T, 382T, 482T. Principles of Neuroscience I.
Examines the core material on essential topics in molecular and cellular neuroscience, together with review and discussion of important early studies and contemporary literature. For each semester hour of credit earned, the equivalent of one lecture hour a week for one semester. Prerequisite: Graduate standing and consent of instructor.

NEU 382V. Neural and Computational Basis of Vision.
Same as Psychology 382V. Introduction to the physiology, psychophysics and computational aspects of the visual system. Review linear systems analysis, information theory, Bayesian statistical decision theory, and other relevant mathematical areas. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 380E, 382V, Psychology 380E, 382V. Prerequisite: Graduate standing and consent of instructor.

NEU 383C. Functional Neuroanatomy.
An examination of the anatomy of the brain and spinal cord, emphasizing connections and functions of neural systems. Three lecture hours a week for one semester. Neuroscience 383C and Psychology 383C may not both be counted. Prerequisite: Graduate standing and consent of instructor.

NEU 383D. Neuropharmacology.
An advanced survey of neurotransmitters and systems in the brain. Emphasis is on pharmacological analysis at the molecular level to determine mechanisms of action of drugs that act on the brain. Three lecture hours a week for one semester. Neuroscience 383D and Pharmacy Graduate Studies 383D may not both be counted. Prerequisite: Graduate standing and consent of instructor.
NEU 383E. Neuropharmacology II.
Same as Pharmacy Graduate Studies 383E. Explore neuropharmacological concepts related to brain development, organization and anatomy; neuroendocrinology, neuroimmunology and neuroinflammation; gut-brain axis; neurobiology of addiction; and others. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 383E, 385L (Topic: Neuropharmacology II), Pharmacy Graduate Studies 383E. Prerequisite: Graduate standing and consent of instructor.

NEU 383M. Data Analysis and Statistics for the Neurosciences.
Statistical applications relevant to areas of research in neuroscience. Three lecture hours a week for one semester. Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.

NEU 183T, 283T, 383T, 483T. Principles of Neuroscience II.
Examines the core material on essential subjects in systems and behavioral neuroscience, together with review and discussion of important early studies and contemporary literature. For every hour of credit earned, the equivalent of one lecture hour a week for one semester. Neuroscience 383T and Psychology 383T may not both be counted. Prerequisite: Graduate standing and consent of instructor.

NEU 384C. Bootstrap Statistics.
Same as Psychology 384C. An introduction to modern methods of statistical analysis based on numerical computer simulation. Covers a range of common data analysis situations drawn mainly from the fields of neuroscience and experimental psychology. Techniques include point estimation, two-group and multiple group experiments, regression and curve fitting, and Bayesian analysis. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 384C, 385L (Topic: Bootstrap Statistics), Psychology 384C, 394U (Topic: Bootstrap Statistics). Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.

Same as Psychology 384M. Covers t-test, chi-square, analysis of variance, and nonparametric tests. Three lecture hours a week for one semester. Prerequisite: Graduate standing, an undergraduate statistics course, and consent of instructor.

NEU 185D. Responsible Conduct of Science.
Ethical considerations in the conduct of science, including issues of animal welfare, data analysis, fraud, publications, misconduct, intellectual property, grants, peer review, and mentor responsibility. One lecture hour a week for one semester. Neuroscience 185D and Pharmacy Graduate Studies 185D may not both be counted. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and consent of instructor.

For each semester hour of credit earned, the equivalent of one lecture hour a week for one semester. Additional laboratory hours may vary with the topic. May be repeated for credit when the topics vary. Prerequisite: Graduate standing; twelve semester hours of upper-division coursework in biology; and consent of instructor.

Topic 3: Addiction Biology. Current research in addiction biology. Students present individual research papers and reports. Three lecture hours a week for one semester. Biology 381K (Topic 8) and Neuroscience 385L (Topic 3) may not both be counted.

Topic 5: Behavioral Neuroendocrinology. Current research in neuroendocrinology, including action of neuroendocrine systems on behavior, assays of substances in the blood to identify gene products, and examination of stress from neuroendocrine, behavioral, health, and immunity perspectives. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 385L (Topic 5), 394P (Topic: Behavioral Neuroendocrinology), Psychology 394P (Topic 17), 394P (Topic: Behavioral Neuroendocrinology).

Topic 6: Foundations of Human Neuroimaging. A survey of the foundations for neuroimaging research with a focus on cognitive neuroscience. Describes the physical methods of image acquisition and physiological mechanisms used for functional imaging. Emphasis on magnetic resonance methods for structural and functional imaging. Surveys other imaging modalities, including positron emission tomography (PET), optical, and EEG/MEG electrical source localization. Only one of the following may be counted: Biology 381K (Topic: Foundations of Neuroimaging), Neuroscience 385L (Topic 6), 394P (Topic: Foundations of Magnetic Resonance Imaging Research), Psychology 394P (Topic: Foundations of Magnetic Resonance Imaging Research), 394P (Topic 13).

Topic 7: Topics in Vision and Hearing. Current research in human vision and hearing. Three lecture hours a week for one semester. Neuroscience 385L (Topic 7) and Psychology 394U (Topic 8) may not both be counted.

Topic 8: Ion Channels and Neuronal Signaling. Molecular properties of ion channels and the mechanisms of electrical signaling in neurons and other excitable cells. Three lecture hours a week for one semester.

Topic 9: Synaptic Physiology and Plasticity in the Central Nervous System. Detailed background in the physiology and plasticity of synaptic transmission in the mammalian central nervous system. Three lecture hours a week for one semester.

Topic 12: Quantifying Brain Structure. Concepts and hands-on applications for quantifying aspects of brain and cellular structure, with a focus on stereological approaches. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 385L (Topic 12), 394P (Topic: Quantitative Methods for Brain Structure), Psychology 394P (Topic 16: Quantifying Brain Structure), 394P (Topic: Quantitative Methods for Brain Structure).

Topic 13: Neurobiology of Disease. Examines the neurobiological basis of disorders of the brain, with a focus on mental illness. Emphasis on the neural circuitries and neurochemical events that underlie specific mental processes and behaviors. Neuroscience 385L (Topic: Neurobiology of Disease) and Neuroscience 385L (Topic 13) may not both be counted.

NEU 385P. Programming and Data Analysis for Modern Neuroscience.
Explore the basics of programming, statistics, and machine learning, and apply these techniques to the analysis of data from neuroscience experiments. Three lecture hours a week for one semester. Neuroscience 385P and 385L (Topic: Prgm/Data Anlys Modern Neu) may not both be counted. Prerequisite: Graduate standing and consent of instructor.

NEU 386D. Multivariate Pattern Analysis.
Same as Psychology 386D. Explores cutting-edge techniques for finding meaningful patterns in large, noisy brain data sets, and how to use these techniques to address a variety of questions in cognitive neuroscience. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 386D, 394P (Topic: fMRI Brain Decoding), Psychology 386D, 387D. Prerequisite: Graduate standing and consent of instructor.

NEU 386G, 486G. Functional and Synaptic Neuroanatomy.
Neuroanatomy and functional connectivity as a basis for brain function and behavior examined from gross structure, cytology and nanoscale synaptic connectivity. Subjects includes somatosensory, motor, visual,
aural, olfactory, taste, limbic, vestibular, hypothalamus, and other systems in addition to the synaptic basis of learning and memory; fear, sleep, stress, and synaptic changes during development, aging, mental retardation, and neurological diseases. Laboratory projects include three-dimensional reconstructions from serial section electron microscopy. For Neuroscience 386G, two lecture hours and one and one half laboratory hours a week for one semester; for Neuroscience 486G, three lecture hours and one and one half laboratory hours a week for one semester. Only one of the following may be counted: Neuroscience 385L (Topic 10), 386G, 486G. Prerequisite: Graduate standing and principles of neuroscience, vertebrate physiology, or other introductory neuroscience course; or consent of instructor.

NEU 288M. Fundamentals of Fluorescence Microscopy.
Same as Pharmacy Graduate Studies 288M. Explores optics, image formation, functioning of epifluorescent and confocal microscopes, detector technology (cameras and photomultiplier tubes), immunofluorescence techniques, image analyses, and image presentation for publication. Study of the technology and science behind widely-used high-end microscope systems. One lecture hour and two lab hours a week for one semester Only one of the following may be counted: Neuroscience 285L (Topic: Fndmntls of Florscnc Micrscopy), 288M, Pharmacy Graduate Studies 288K (Topic: Fndmntls of Florscnc Micrscopy), 288M. Offered on the letter-grade basis only. Prerequisite: Graduate standing and consent of instructor.

NEU 190, 290, 390. Research.
The equivalent of one, two, or three lecture hours a week for one semester. May be repeated for credit. Prerequisite: Graduate standing and fifteen semester hours of coursework in neuroscience; students must contact the Neuroscience Graduate Studies Office before registering.

NEU 191. Graduate Seminar in Neuroscience.
Presentations and discussions of research topics in neuroscience. One lecture hour a week for one semester. May be repeated for credit. Offered on the credit/no credit basis only. Prerequisite: Graduate standing and consent of instructor.

NEU 391N. Learning and Memory.
Same as Psychology 391N. Presentation of contemporary approaches to the study of conditioning and learning at the behavioral level. Focuses on empirical data and theoretical analysis of acquisition and performance in Pavlovian and instrumental conditioning. Includes discussion of habituation, sensitization, stimulus control, and other paradigms for studying cognitive processes in nonverbal organisms. Three lecture hours a week for one semester. Prerequisite: Graduate standing.

NEU 394L. Neuroinflammation in Health and Pathology.
Same as Psychology 394L. Assess cutting-edge pre-clinical and clinical neuroimmune research, and interact with professors from across campus in special seminars. Three lecture hours a week for one semester. Only one of the following may be counted: Neuroscience 394L, 394P (Topic: Neuroinflammation in Hlth/Path), Psychology 394L, 394P (Topic: Neuroinflammation in Hlth/Path). Prerequisite: Graduate standing and consent of instructor.

NEU 394N. Neural Networks.
Same as Computer Science 394N. Biological information processing; architectures and algorithms for supervised learning, self-organization, reinforcement learning, and neuro-evolution; theoretical analysis; hardware implementations and simulators; applications in engineering, artificial intelligence, and cognitive science. Three lecture hours a week for one semester. Only one of the following may be counted: Computer Science 394N, Neuroscience 394N, 394P (Topic: Neural Networks). Prerequisite: Graduate standing.

NEU 394P. Seminars in Neuroscience.
Three lecture hours a week for one semester. May be repeated for credit when the topics vary. Prerequisite: Graduate standing and consent of instructor.

Topic 1: Current Topics in Behavioral Neuroscience. Brain-behavior relationships, particularly recent research in behavioral neuroscience, including the anatomical and neurochemical mechanisms of behavioral events, and behavioral influences on the brain. Neuroscience 394P (Topic 1) and Psychology 394P (Topic 1) may not both be counted.

Topic 3: Neurobiology of Learning and Memory. Neuroanatomical systems that are functionally related to basic forms of learning and memory in mammals. Neuroscience 394P (Topic 3) and Psychology 394P (Topic 3) may not both be counted.

NEU 396D. Clinical Psychopharmacology.
Same as Psychology 396D. Recent findings concerning the mechanisms of action and the behavioral effects of psychoactive drugs, particularly those used in psychiatry. Three lecture hours a week for one semester. Prerequisite: Graduate standing and consent of instructor.

NEU 695. Thesis.
The equivalent of three lecture hours a week for one semester. Offered on the credit/no credit basis only. Prerequisite: For 698A, graduate standing in neuroscience and consent of the graduate adviser; for 698B, Neuroscience 698A.

May be repeated for credit. Offered on the credit/no credit basis only. Prerequisite: Admission to candidacy for the doctoral degree.

Professional Courses