Facilities for Graduate Work

To provide the most advanced resources for teaching and research, the Department of Computer Science manages its own network and system of more than 1,000 hosts. A staff of 12, under the direction of the department chair, specifies, buys, installs, and maintains this computing infrastructure. Through accounts on the department's Linux and MacOS workstations, students, faculty members, and staff have access to public laboratories and private equipment.

Many different computer systems are available for research use by faculty members and students in the department. The department operates a general-purpose high-throughput computing (HTC) Linux cluster with over 2,000 cores, Dell PowerEdge checkpoint servers, 100 nVidia GPUs of various types, and a NetApp filer with 77TB of storage. This cluster, as well as all public computing resources, are available to everyone via HTCondor, a resource management tool for widely distributed systems. There are several hundred Linux machines in public labs, and there are over 100 Linux boxes on graduate desks. Several hundred other workstations of varying configurations and platforms are located in private research labs or on researchers' desks.

All departmental computers are networked together using one or 10 Gigabits per second Ethernet. The network, managed and maintained by staff, consists of over 100 Cisco switches, with a Cisco 6513 serving as its point of presence and firewall. Network-accessible storage is provided by a NetApp filer with 77TB of space dedicated to cluster computing work and 75TB for home directories as well as infrastructural, project and course-related storage.

Areas of Study

Graduate study in computer science is offered in the following areas: analysis of algorithms; artificial intelligence; automated reasoning; communication protocols; compilers; computational biology; computational complexity; computational visualization; computer architecture; computer graphics; computer networks; computer vision; cryptography; data mining; database management; distributed systems; fault-tolerant computing; formal methods; machine learning; mathematical software; mobile and ad hoc networks; natural language processing; neural networks; numerical analysis; operating systems; parallel programming; programming language design and implementation; randomized algorithms; real-time systems; robotics; scientific computing; secure computing; software construction from components; system modeling; theoretical computer science; and wireless networks. The Master of Science and PhD degrees in Computer Science are STEM Designated Degree Programs, as identified by the Department of Homeland Security for purposes of the 24-month STEM optional practical training extension.

Graduate Studies Committee

The following faculty members served on the Graduate Studies Committee (GSC) in the spring 2023 semester.

Scott J Aaronson
Aditya Akella
Chandrajit L Bajaj
Donald S Batory
George Biros
Joydeep Biswas
James Bornholt
Alan C Bovik
Constantine Caramanis
Swarat Chaudhuri
Shuchin Chawla
Eunsol Choi
Inderjit S Dhillon
Isil Dillig
Georgios-Alex Dimakis
Gregory C Durrett
Katrin E Erk
Donald S Fussell
Anna Gal
Joydeep Ghosh
Milos Gligoric
Kristen L Grauman
Danna Gurari
David Harwath
Qixing Huang
Warren A Hunt Jr
Alexander Huth
Adam R Klivans
Philipp Kraehenbuehl
Matthew Alan Lease
Min Kyung Lee
Jessy Li
Calvin Lin
Qiang Liu
Roberto Martin-Martín
Kenneth McMillan
Risto P Miikkulainen
Daniel P Miranker
Aloysius K Mok
Raymond J Mooney
Dana Harak Moshkovitz aaronson
Scott David Niekum
Evdokia Nikolova
Gordon S Novak Jr
Amy Pavel
Simon Peter
Keshav K Pingali
C Greg Plaxton
William H Press
Eric Price
Lili Qiu
Vijaya Ramachandran
Christopher J Rossbach
Sujay Sanghavi
Purnamrita Sarkar
James G Scott
Hovav Shacham
David Soloveichik
Peter H Stone
Andrea Lockerd Thomaz
Ufuk Topcu
Robert A Van De Geijn
Vijaychidambaram Velayudhan
Pillai
Paul Etienne Vouga
Atlas Wang
Brent R Waters
Emmett Witchel
John Wright
David Junzi Wu
Yuke Zhu
David I Zuckerman

Admission Requirements

Most entering graduate students have degrees in computer science. Students with degrees in other areas may be considered for admission; if admitted, they may be required to take undergraduate courses in computer science, without credit toward a graduate degree, to satisfy background requirements.