Skip to Content

This is an archived copy of the 2014-15 catalog. To access the most recent version of the catalog, please visit http://catalog.utexas.edu/.

Aerospace Engineering

Master of Science in Engineering
Doctor of Philosophy

For More Information

Campus address: W. R. Woolrich Laboratories (WRW) 215D, phone (512) 471-7595, fax (512) 471-3788; campus mail code: C0600

Mailing address: The University of Texas at Austin, Graduate Program in Aerospace Engineering, Department of Aerospace Engineering and Engineering Mechanics, 1 University Station C0600, Austin TX 78712

E-mail: ase.grad@mail.ae.utexas.edu

URL: http://www.ae.utexas.edu/

Objectives

The aerospace engineering graduate program focuses on teaching and research in analytical, computational, and experimental methods in the areas of aerothermodynamics and fluid mechanics; solids, structures, and materials; structural dynamics; guidance and control; and orbital mechanics. The student may concentrate in any of these five areas. The objectives of the program are to enable the student to attain a deeper understanding of aerospace engineering fundamentals, a knowledge of recent developments, and the ability as a master’s degree student to participate in research and as a doctoral degree student to conduct individual research. The goals are accomplished through coursework, seminars, and active research programs.

Areas of Study and Facilities

Aerothermodynamics and fluid mechanics. This concentration involves study and research in experimental, theoretical, and computational aerodynamics, gas dynamics, turbulence, plasma dynamics, heat transfer, and combustion. Research is presently being conducted in nonequilibrium and rarefied gas flows, turbulence control, shock-boundary layer interactions, thermal and glow-discharge plasmas, turbulent mixing/combustion, numerical methods for turbulent reacting flows, multiphase combustion nanoparticle synthesis in flames, and advanced optical diagnostics and sensors. Facilities include Mach 2 and Mach 5 blowdown wind tunnels, a 1.25-second low-gravity drop tower, a 5' × 7' low-speed wind tunnel, a 15" × 20" water channel, a laser sensor laboratory, combustion facilities, a plasma engineering laboratory, and extensive laser and camera systems for advanced flow diagnostics. The excellent computational facilities include a variety of workstations, a 256-core Linux cluster, and access to very-large-scale, high-performance computers.

Solids, structures, and materials. This concentration involves study and research in mechanics of composite materials, fracture mechanics, micromechanics of materials, constitutive equations, mechanical behavior at high strain rates, structural analysis, and structural stability. Experimental facilities include equipment for static structural testing; digital data acquisition equipment; uniaxial and biaxial materials-testing machines; custom loading devices; environmental chambers; microscopes; photomechanics facilities; composites processing equipment; facilities for microstructural analysis; and high-speed imaging and high-strain-rate mechanical testing facilities. Computing facilities include workstations, high-performance computers, and networks of workstations.

Structural dynamics. This concentration involves study and research in theoretical, computational, and experimental structural dynamics, including aeroelasticity, rotor dynamics, morphing structures, adaptive structures, vibration and noise control, and computational techniques for very-large-scale vibration analysis. Computational and experimental facilities include high-performance shared- and distributed-memory multiprocessor systems, actuators, sensors, balances, and data-acquisition systems for structural testing, system identification, and control. Facilities for testing aeroelastic models on a whirl test stand or in a wind tunnel are also available.

Guidance and control. This concentration involves study and research in system theory, control theory, optimal control theory, time-delay observers, estimation theory, and stochastic control theory, and the application of these theories to the navigation, guidance, control, and flight mechanics of aerospace vehicles. Research is primarily analytical and numerical in nature. Excellent computational and experimental facilities are available for the study of various guidance and control applications.

Orbital mechanics. This concentration involves study and research in the applications of celestial mechanics, analytical dynamics, geophysics, numerical analysis, optimization theory, estimation theory, and computer technology to model the dynamic behavior of natural and artificial bodies in the solar system. Two areas of interest are satellite applications and spacecraft design.

Satellite applications involve the study of active and passive satellite remote sensing for research in earth, ocean, atmospheric, and planetary science; satellite positioning, primarily using the Global Positioning System (GPS) for earth science research; and satellite tracking and instrumentation, including altimeters, for a variety of geophysical and geodetic studies, including the study of Earth’s gravity field and rotation. Research is supported by a large database of satellite remote sensing measurements, a variety of computer resources, GPS receivers, and image processing equipment.

Spacecraft design involves the application of all disciplines of aerospace engineering to the design of aerospace vehicles, missions, and related systems. Experimental facilities include a satellite laboratory containing high-gain antennas for satellite tracking and a clean room area for fabrication and testing of space flight hardware. Research is primarily applied in nature and involves the synthesis of information from all engineering disciplines, mathematics, the natural sciences, economics, project management, and public policy.

Graduate Studies Committee

The following faculty members served on the Graduate Studies Committee in the spring semester 2013.

Behcet Acikmese
Maruthi R Akella
Efstathios Bakolas
Jeffrey K Bennighof
Srinivas V Bettadpur
Noel T Clemens
Clinton N Dawson
Leszek F Demkowicz
Wallace T Fowler
David B Goldstein
Rui Huang
Thomas J Hughes
David G Hull
Todd E Humphreys
Stelios Kyriakides
Chad M Landis
Kenneth M Liechti
Glenn Lightsey
Nanshu Lu
Hans M Mark
Mark E Mear
Cesar A Ocampo
J T Oden
Laxminarayan L Raja
Venkatramanan Raman
Krishnaswa Ravi-Chandar
Gregory J Rodin
Ryan P Russell
Bob E Schutz
Jayant Sirohi
Byron D Tapley
Charles E Tinney
Philip L Varghese
Mary F Wheeler

Admission Requirements

The prerequisite for graduate study in aerospace engineering is a bachelor’s or master’s degree in aerospace engineering or in a related field of engineering or science. Graduate study in orbital mechanics is possible for those with degrees in engineering, science, or mathematics.


What Starts Here Changes the World