This is an archived copy of the 2014-16 catalog. To access the most recent version of the catalog, please visit

Bachelor of Science in Aerospace Engineering

The field of aerospace engineering developed because of humanity’s desire for aircraft systems for military, commercial, and civilian purposes; it was first called aeronautical engineering or aeronautics. When the space age began, it was natural for aeronautical engineers to participate in the development of spacecraft systems for space exploration. This branch of engineering became known as astronautical engineering or astronautics, and the combined field is called aerospace engineering or aeronautics and astronautics. Because of the diverse nature of the work, the aerospace engineer must have a basic knowledge of physics, mathematics, digital computation, and the various disciplines of aerospace engineering: aerodynamics and propulsion, structural mechanics, flight mechanics and orbital mechanics, and control. Because of their extensive education in fundamental disciplines, aerospace engineers can work in areas other than aerospace engineering and are employed in a wide range of careers.

The objectives of the aerospace engineering degree program are to prepare students for professional practice in aerospace engineering and related engineering and scientific fields; to prepare students for such postbaccalaureate study as their aptitudes and professional goals may dictate; to instill in students a commitment to lifelong education and to ethical behavior throughout their professional careers; and to make students aware of the global and societal effects of technology. To meet these objectives, the faculty has designed a rigorous curriculum that emphasizes fundamentals in the basic sciences, mathematics, and the humanities, and integrates classroom and laboratory experiences in the engineering disciplines of aerodynamics and propulsion, structural mechanics, mechanics of materials, flight and orbital mechanics, controls, computation, measurements and instrumentation, design, and technical communication. The curriculum requires students to use modern engineering tools, to work individually, and to practice teamwork.

The first two years of the aerospace engineering curriculum emphasize fundamental material along with engineering sciences, while the third year introduces concepts in the areas of fluid mechanics, structural mechanics, system dynamics and control, and experimentation. The fourth year provides further depth in aerospace engineering, with emphasis on design and laboratory courses. After acceptance into the major sequence, usually during the junior year, the student elects to pursue one of two technical areas, atmospheric flight or space flight. Both area options are complemented by general education courses and courses offered in other engineering disciplines. In addition, the student may choose technical electives that increase the breadth of the program or that provide additional depth within one or more subdisciplines. All of the following subdisciplines are also represented in the required courses for both technical area options.

Aerodynamics and Propulsion

This subdiscipline embraces study in one of the more traditional areas of aerospace engineering. It involves fluid motion, propulsion, lift and drag on wings and other bodies, high-speed heating effects, and wind tunnel investigation of these problems. Topics of study include fluid mechanics, gas dynamics, heat transfer, aerodynamics, propulsion, and experimental fluid mechanics.

Structural Mechanics

This subdiscipline includes the study of airplane, spacecraft, and missile structures, the materials that make them efficient, and methods for testing, analysis, and design of new structural systems. Course topics include structural analysis, structural dynamics, materials (including advanced composites), aeroelasticity, experimental structural mechanics, and computer-aided design of structures.

Flight Mechanics and Orbital Mechanics

Flight mechanics involves the analysis of the motion of aircraft, missiles, rockets, reentry vehicles, and spacecraft that are subjected to gravitational, propulsive, and aerodynamic forces; the study of uncontrolled motion of satellites and coasting spacecraft is usually referred to as orbital mechanics. Subject matter in these areas includes trajectory analysis and optimization; attitude dynamics, stability, and control; flight test; orbit determination; orbital operations; systems engineering; sensors; satellite hardware applications; and simulation.

Flight Control

Control theory is applied in aerospace engineering to the development of automatic flight control systems for aircraft (autopilots and stability augmentation systems), attitude control systems for satellites, and guidance and control systems for missiles, rockets, reentry vehicles, and spacecraft. Course topics include linear system theory, classical control theory, digital control, and probability theory.

Portable Computing Devices

Students entering aerospace engineering are required to have access to a portable computing device capable of running the software tools required for undergraduate engineering analyses (MatLab, Word, Excel, etc). This device does not need to be brought to campus on a daily basis, but individual courses may require that the device be brought to certain lectures, labs, and/or exams. Once admitted, students will be informed by the Aerospace Engineering and Engineering Mechanics Department office about specific device requirements.


Course requirements are divided into three categories: basic sequence courses, major sequence courses, and other required courses. In addition, each student much complete the University’s Core Curriculum . In some cases, a course that fulfills one of the following requirements may also be counted toward core curriculum or flag requirements; these courses are identified below. To ensure that courses used to fulfill the social and behavioral sciences and visual and performing arts requirements of the core curriculum also meet ABET criteria, students should follow the guidance given in ABET Criteria .

In the process of fulfilling engineering degree requirements, students must also complete coursework to satisfy the following flag requirements: one independent inquiry flag, one quantitative reasoning flag, one ethics and leadership flag, one global cultures flag, one cultural diversity in the United States flag, and two writing flags. The independent inquiry flag, the quantitative reasoning flag, the ethics and leadership flag, and both writing flags are carried by courses specifically required for the degree; these courses are identified below. Courses that may be used to fulfill flag requirements are identified in the Course Schedule .

Enrollment in major sequence courses is restricted to students who have received credit for all of the basic sequence courses and have been admitted to the major sequence. Requirements for admission to a major sequence are given in Admission to a Major Sequence . Enrollment in other required courses is not restricted by completion of the basic sequence.

Courses used to fulfill technical elective requirements must be approved by the aerospace engineering faculty before the student enrolls in them.

The student must take all courses required for the degree on the letter-grade basis and must earn a grade of at least C- in each course, except for those listed as Remaining Core Curriculum Courses. He or she must also maintain grade point averages of at least 2.00 in the major area of study and in required technical courses as described in Academic Standards , and a cumulative University grade point average of at least 2.00 as described in General Information .

Basic Sequence Courses
Aerospace Engineering
ASE 301Introduction to Computer Programming3
ASE 211KEngineering Computation2
ASE 333TEngineering Communication (writing flag and ethics and leadership flag)3
CH 301Principles of Chemistry I (part II science and technology)3
Engineering Mechanics
E M 306Statics3
E M 311MDynamics3
E M 319Mechanics of Solids3
M 408CDifferential and Integral Calculus (mathematics; quantitative reasoning flag)4
M 408DSequences, Series, and Multivariable Calculus4
M 427KAdvanced Calculus for Applications I (quantitative reasoning flag)4
M 427LAdvanced Calculus for Applications II4
PHY 303KEngineering Physics I (part I science and technology; quantitative reasoning flag)3
PHY 303LEngineering Physics II (part I science and technology; quantitative reasoning flag)3
PHY 103MLaboratory for Physics 303K1
PHY 103NLaboratory for Physics 303L1
Rhetoric and Writing
RHE 306Rhetoric and Writing (English composition)3
Major Sequence Courses
Aerospace Engineering
ASE 320Low-Speed Aerodynamics3
ASE 119KLow-Speed Aerodynamics Laboratory1
ASE 324LAerospace Materials Laboratory3
ASE 330MLinear System Analysis3
ASE 362KCompressible Flow3
ASE 365Structural Dynamics3
ASE 366KSpacecraft Dynamics3
ASE 367KFlight Dynamics3
ASE 370LFlight Control Systems3
ASE 375Electromechanical Systems3
ASE 376KPropulsion3
Technical area courses13
Approved technical electives6
Other required courses
M E 210Engineering Design Graphics2
M E 320Applied Thermodynamics3
Remaining Core Curriculum Courses
E 316LBritish Literature (humanities)3
or E 316M American Literature
or E 316N World Literature
or E 316P Masterworks of Literature
American and Texas government6
American history6
Social and behavioral sciences3
Visual and performing arts3
UGS 302First-Year Signature Course (some sections carry writing flag)3
or UGS 303 First-Year Signature Course
Total Hours126

Technical Area Options

The technical area option allows the student to choose thirteen semester hours of technical area courses in either atmospheric flight or space flight. Each student should choose a technical area by the end of the first semester of the junior year and plan an academic program to meet the area requirements in the next three semesters. Many students choose technical electives that will strengthen their backgrounds in one specialty area, but this is not required. It should be noted that a student may choose the technical area courses in the other technical area as technical electives.

Area 1, Atmospheric Flight

Also called aeronautics, this area provides the student with a well-rounded program of study emphasizing the major disciplines of aerodynamics, propulsion, structures, design, performance, and control of aircraft. These subjects are treated at a fundamental level that lays a foundation for work in a broad variety of specialties in the aircraft industry. This option is intended for the undergraduate student whose primary interest is aircraft.

Aerospace Engineering 321K, Computational Methods for Structural Analysis
Aerospace Engineering 361K, Aircraft Design I (carries an independent inquiry flag)
Aerospace Engineering 361L, Aircraft Design II (carries a writing flag)
Aerospace Engineering 119L, High-Speed Aerodynamics Laboratory
Aerospace Engineering 364, Applied Aerodynamics

Area 2, Space Flight

Also called astronautics, this area offers a well-rounded program of study that provides a background in the traditional areas of fluid mechanics, materials, structures, propulsion, controls, and flight mechanics, while also giving the student a chance to learn about the space environment, attitude determination and control, orbital mechanics, mission design, and spacecraft systems engineering. These subjects are treated at a fundamental level that lays a foundation for work in a broad variety of specialties in space-related industries. This option is intended for the undergraduate student whose primary interest is space and spacecraft.

Aerospace Engineering 366L, Applied Orbital Mechanics
Aerospace Engineering 119M, Spacecraft Systems Laboratory
Aerospace Engineering 372K, Attitude Dynamics
Aerospace Engineering 374K, Space Systems Engineering Design
Aerospace Engineering 374L, Spacecraft/Mission Design (carries an independent inquiry flag and a writing flag)

Special Projects Laboratories

The department offers students the opportunity to participate in special projects such as student-built radio-controlled aircraft competitions and student satellite-building projects. These time-intensive projects are open to all aerospace engineering students with at least fifteen semester hours of University credit toward the degree and a grade point average of at least 2.50. Academic credit for participation in departmentally approved student projects is available on the pass/fail basis through the course Aerospace Engineering 128 . Three such laboratory courses can be combined to count as one three-hour technical elective; one such laboratory course can be combined with a two-hour cooperative program to count as one three-hour technical elective.