Search Results

BME 376 BME 376. Cell Engineering. 3 Hours.

Restricted to biomedical engineering majors. Introduction to principles that govern the structure, organization, and processes at cellular and subcellular levels. Special focus on engineering and quantitative aspects of cellular machinery. Employs engineering approaches to study receptors, macromolecular complexes, and cellular signaling; clinical and pharmaceutical approaches to perturb cellular structure and function for disease prevention and drug design. State-of-the-art experimental and computational techniques to study cellular engineering. Three lecture hours a week for one semester. Prerequisite: Upper-division standing, Biochemistry 369 and Biology 311C or 315H with a grade of at least C- in each.

Bachelor of Science in Biomedical Engineering



The mission of the Department of Biomedical Engineering is to develop clinically translatable solutions for human health by training the next generation of biomedical engineers, cultivating leaders, and nurturing the integration of science, engineering, and medicine in a discovery-centered environment. The main educational objective is to provide a thorough training in the fundamentals of engineering science, design, and biology. The curriculum is designed to provide concepts central to understanding living systems from the molecular and cellular levels to the tissue and organismal levels. The curriculum incorporates principles of vertical integration, leading to the choice of a technical area (biomedical imaging and instrumentation, cellular and biomolecular engineering, computational biomedical engineering, or molecular, cellular, and tissue biomechanics), and culminates in a team capstone design experience. Students are expected to develop an understanding of industrial, research, and clinical biomedical engineering environments; an understanding of regulatory issues and biomedical ethics; the ability to create, identify, formulate, and solve biomedical engineering problems; the ability to design systems to meet needs in medical/life science applications; an understanding of life processes at the molecular, cellular, tissue, and organismal levels; the ability to use instrumentation and to make measurements and interpret data in living systems; and an appreciation of the interdisciplinary nature of biomedical engineering research.