Search Results
ECE 339 ECE 339. Solid-State Electronic Devices. 3 Hours.
Examine semiconductor materials; atomic orbitals to energy band structure of semiconductors; charge carrier transport, electron-hole generation and recombination; p-n junctions and Schottky barriers; bipolar and field-effect transistors; and optoelectronic devices. Three lecture hours a week for one semester. Electrical and Computer Engineering 339 and Electrical Engineering 339 may not both be counted. Prerequisite: Mathematics 427J or 427K, Physics 303L, and Physics 105N OR 103N with a grade of at least C- in each.
Bachelor of Science in Electrical and Computer Engineering
Undergraduate
http://catalog.utexas.edu/undergraduate/engineering/degrees-and-programs/bs-electrical-engineering/
The curriculum in electrical engineering and computer engineering is designed to educate students in the fundamentals of engineering, which are built upon a foundation of mathematics, science, communication, and the liberal arts. Graduates should be equipped to advance their knowledge while contributing professionally to a rapidly changing technology. Areas in which electrical and computer engineers contribute significantly are: communications, signal processing, networks and systems, electronics and integrated circuits, energy systems and renewable energy, fields, waves and electromagnetic systems, nanoelectronics and nanotechnology, computer architecture and embedded systems, and software engineering and design. Typical career paths of graduates include design, development, management, consulting, teaching, and research. Many graduates seek further education in law, medicine, business, or engineering.