Search Results

BME 356 BME 356. Polymer and Bioconjugate Chemistry. 3 Hours.

Restricted to biomedical engineering majors. Introduction to synthetic principles of polymeric biomaterials and bioconjugate chemistry with an emphasis on synthetic strategies to achieve specific properties. Explores characterization methods of polymers and bioconjugates as a function of chemical composition, as well as tissue engineering and drug delivery applications as case studies of the biomaterial design process. Three lecture hours a week for one semester. Biomedical Engineering 356 and 377T (Topic: Polymer/Bioconjugate Chem) may not both be counted. Prerequisite: Biomedical Engineering 352 or Chemical Engineering 350 with a grade of at least C-.

Bachelor of Science in Biomedical Engineering



The mission of the Department of Biomedical Engineering is to develop clinically translatable solutions for human health by training the next generation of biomedical engineers, cultivating leaders, and nurturing the integration of science, engineering, and medicine in a discovery-centered environment. The main educational objective is to provide a thorough training in the fundamentals of engineering science, design, and biology. The curriculum is designed to provide concepts central to understanding living systems from the molecular and cellular levels to the tissue and organismal levels. The curriculum incorporates principles of vertical integration, leading to the choice of a technical area (biomedical imaging and instrumentation, cellular and biomolecular engineering, computational biomedical engineering, or molecular, cellular, and tissue biomechanics), and culminates in a team capstone design experience. Students are expected to develop an understanding of industrial, research, and clinical biomedical engineering environments; an understanding of regulatory issues and biomedical ethics; the ability to create, identify, formulate, and solve biomedical engineering problems; the ability to design systems to meet needs in medical/life science applications; an understanding of life processes at the molecular, cellular, tissue, and organismal levels; the ability to use instrumentation and to make measurements and interpret data in living systems; and an appreciation of the interdisciplinary nature of biomedical engineering research.