Search Results
BME 373 BME 373. Tissue, Scaffold, and Cell Biomechanics Applications. 3 Hours.
Restricted to biomedical engineering majors. Fundamentals of biosolid mechanics via the mechanical behavior of scaffolds and living tissues and cells. Emphasis on biomechanical applications to contemporary problems in biomedical research and medical devices. Three hours of lecture a week for one semester. Biomedical Engineering 373 and 377T (Topic: Cell, Tissue and Scaffold Biomechanics for Contemporary Biomedical Engineering Applications) may not both be counted. Prerequisite: The following coursework with a grade of at least C-: Biomedical Engineering 313L or Computational Engineering 311K, Biomedical Engineering 335 or Mechanical Engineering 335, Biomedical Engineering 344 or Engineering Mechanics 319, Biomedical Engineering 353, 365R, and 365S.
Bachelor of Science in Biomedical Engineering
Undergraduate
http://catalog.utexas.edu/undergraduate/engineering/degrees-and-programs/bs-biomedical-engineering/
The mission of the Department of Biomedical Engineering is to develop clinically translatable solutions for human health by training the next generation of biomedical engineers, cultivating leaders, and nurturing the integration of science, engineering, and medicine in a discovery-centered environment. The main educational objective is to provide a thorough training in the fundamentals of engineering science, design, and biology. The curriculum is designed to provide concepts central to understanding living systems from the molecular and cellular levels to the tissue and organismal levels. The curriculum incorporates principles of vertical integration, leading to the choice of a technical area (biomedical imaging and instrumentation, cellular and biomolecular engineering, computational biomedical engineering, or molecular, cellular, and tissue biomechanics), and culminates in a team capstone design experience. Students are expected to develop an understanding of industrial, research, and clinical biomedical engineering environments; an understanding of regulatory issues and biomedical ethics; the ability to create, identify, formulate, and solve biomedical engineering problems; the ability to design systems to meet needs in medical/life science applications; an understanding of life processes at the molecular, cellular, tissue, and organismal levels; the ability to use instrumentation and to make measurements and interpret data in living systems; and an appreciation of the interdisciplinary nature of biomedical engineering research.